Definition of the Limit of Function:

We now state the precise definition of the limit of a function f at a point c. It is important to note that
in this definition, it is immaterial whether f is defined at ¢ or not. In any case, we exclude ¢ from
consideration in the determination of the limit.

Definition LetA C IR, and let ¢ be a cluster point of A. For a functionf : A — R, a

real number L is said to be a limit of f at ¢ if, given any ¢ > 0, there exists a § > 0 such that
if xeAand 0 < |x —c| < §, then |f(x) — L| < &.

Remarks (a) Since the value of § usually depends on &, we will sometimes write (&)
instead of § to emphasize this dependence.

(b) The inequality O < |x — c| is equivalent to saying x # c.
If L is a limit of f at ¢, then we also say that f converges to L at c. We often write

L=1limf(x) or L=lmf.
X Xt

We also say that “f(x) approaches L as x approaches ¢.”” (But it should be noted that the
points do not actually move anywhere.) The symbolism

f(x) =L as x—c

is also used sometimes to express the fact that f has limit L at c.

If the limit of f at ¢ does not exist, we say that f diverges at c.

Our first result is that the value L of the limit is uniquely determined. This uniqueness
is not part of the definition of limit, but must be deduced.
Theorem If f:A — R and if ¢ is a cluster point of A, then f can have only one
limit at c.
Proof. Suppose that numbers L and L' satisfy Definition 4.1.4. For any ¢ > 0, there exists
8(e/2) > Osuchthatif x e Aand 0 < |x — ¢| < 8(g/2), then | f(x) — L| < g/2. Also there
exists &' (¢/2) such that if x € A and 0 < |x — d < &(g/2), then | f(x) — L'| < ¢/2. Now

let § := inf{8(e/2), &'(¢/2)}. Then if x € A and 0 < |x — | < &, the Triangle Inequality
implies that

IL=L|<|L—fx)] +[f(x) - L| <e/2+ /2=
Since £ > 0 is arbitrary, we conclude that L — L' = 0, so that L = L.
The definition of limit can be very nicely described in terms of neighborhoods.
We observe that because |

Vi(c) =(c =8, ¢+8) = {x:|x —d <8},
the inequality 0 < |[x — ¢| < § is equivalent to saying that x # ¢ and x belongs to the
d-neighborhood V(c) of c. Similarly, the inequality | f(x) — L| < ¢ is equivalent to saying
that f(x) belongs to the ¢-neighborhood V(L) of L. In this way, we obtain the following
result. The reader should write out a detailed argument to establish the theorem.
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There exists Vz(c)
The limit of fat ¢ is L
Theorem Letf:A — R and let ¢ be a cluster point of A. Then the following

statements are equivalent.

(i) limf(x) =L
(ii) Given any ¢-neighborhood V (L) of L, there exists a §-neighborhood Vg(¢) of ¢ such
that if x # c is any point in Vz(c) N A, then f(x) belongs to V,.(L).

Examples (a) limb = b.

To be more explicit, let f(x) := b for all x € R. We want to show that lim f(x) = b.If
& > 01is given, we let § := 1. (Infact, any strictly positive § will serve the pﬁ?ﬁose.) Then if

O0<|x—¢ <1, we have |f(x) — b = |b— b =0 < & Since &> 0 is arbitrary, we
conclude from Definition 4.1.4 that lim f(x) = b.
(b) limx =c. o

Let g(x) := xforall x € R.Ife > 0, we choose §(g) := &. Then if 0 < |x — ¢ < 8(&),
we have [g(x) — ¢| = |x — ¢| < & Since ¢ > 0 is arbitrary, we deduce that lim g = c.
(© limx® =2 o

X—C

Let A(x) := x? for all x € R. We want to make the difference
|h(x) — 3| = |x* — 2

less than a preassigned ¢ > 0 by taking x sufficiently close to ¢. To do so, we note that
x? — ¢ = (x+ ¢)(x — ¢). Moreover, if |[x — ¢| < 1, then

|x] < |e| + 1 so that e + o < x|+ |c] <2]c] + 1.
Therefore, if |[x — ¢| < 1, we have
(1) |x* — | =|x+cllx —¢| < (2]c] + 1) |x — ]

Moreover this last term will be less than ¢ provided we take |x —c¢| < &/(2|c| + 1).
Consequently, if we choose

E
3z) == inf 1, ———
@ = e { L

then if 0 < |x — ¢|] < 8(g), it will follow first that |[x — ¢ < 1 so that (1) is valid, and
therefore, since |[x — ¢ < ¢/(2|c| + 1) that



Ix2 - Czl < (2lel+D)]x - <e.

Since we have a way of choosing §(¢) > 0 for an arbitrary choice of ¢ > 0, we infer that

lim A(x) = limx* = ¢*.

N
(d) lim—=-ifc> 0.
x—=eX ¢

Let ¢(x) := 1/x for x > 0 and let ¢ > 0. To show that lim ¢ = 1/¢ we wish to make
the difference e

less than a preassigned ¢ > 0 by taking x sufficiently close to ¢ > 0. We first note that

E(C‘X)

=—|x — (]
X ¢ cx

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some
neighborhood of c. In particular, if [x — ¢| < 3¢, then j¢ < x < %c (why?), so that

1 2 1
0<—<— f - —c.
< - <C2 or Ix —c| < 5€
Therefore, for these values of x we have

o(x) — ]E

(2)

< §|x— cl.

In order to make this last term less than ¢ it suffices totake |x — ¢| < %6‘28. Consequently, if
we choose

. 1 1
8(e) == mf{i c, 56‘28}1
then if 0 < |x — ¢| < 8(¢), it will follow first that |x — ¢| < 3¢ so that (2) is valid, and
therefore, since |x — ¢ < (1c?)e, that

X C

limg = 1/c.
X—C

Let ¥(x):= (x> —4)/(x>+1) for x € R. Then a little algebraic manipulation
gives us
4, |52 —4x? — 24|
“I’(x) 5T s
57 4 6x +12]
5(x2+1)

- |x = 2.



To get a bound on the coefficient of |x — 2|, we restrict x by the condition 1 < x < 3.
For x in this interval, we have 5x* +6x+12<5-324+6-3+12=75 and
5(x2+1)>5(1 +1) = 10, so that
4 75 15
——| < =|x=2| =—=|x —2|.
o 3| < Bix—21= Pix -2

Now for given &€ > 0, we choose

8(e) = inf{l, 12—58}

Then if 0 < |x — 2| < 8(¢), we have |¥(x) — (4/5)] < (15/2)|x — 2| < &. Since ¢ > O is
arbitrary, the assertion is proved. O

Sequential Criterion for Limits

Theorem (Sequential Criterion) Let f : A — R and let ¢ be a cluster point of A.
Then the following are equivalent.

(i limf =L

(ii) For every sequence (x,) in A that converges to ¢ such that x, # c for alln € N, the
sequence (f(x,)) converges to L.

Proof. (i) = (ii). Assume f has limit L at ¢, and suppose (x,) is a sequence in A with
lim(x,) = ¢ and x,, # ¢ for all n. We must prove that the sequence ( f(x,)) converges to L.
Let ¢ > O be given. Then by Definition 4.1.4, there exists § > 0 such that if x € A satisfies

0 < |x —c| <4, then f(x) satisfies |f(x) — L| < & We now apply the definition of
convergent sequence for the given § to obtain a natural number K(§) such that if n >
K(8) then |x, — ¢| < 8. But for each such x, we have | f(x,) — L| < &. Thus if n > K(8),
then | f(x,) — L| < &. Therefore, the sequence (f(x»)) converges to L.

(ii) = (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists
an gg-neighborhood V(L) such that no matter what §-neighborhood of ¢ we pick, there
will be at least one number x5 in A N Vs(c) with x; # ¢ such that f(x5) ¢ V. (L). Hence for
every n € N, the (1/n)-neighborhood of ¢ contains a number x,, such that

0<|xy—cl<1/n and Xn €A,
but such that

| f(xn) — L| 2> &0 for all neN.

We conclude that the sequence (x,) in A\ {¢} converges to ¢, but the sequence ( f(x,)) does
not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We

conclude that (ii) implies (i). QED.
Divergence Criteria Let ACR, let f:A— R and let c€ R be a cluster
point of A.

(a) IfL € R, thenfdoes not have limit L at c ifand only if there exists a sequence (x,) in A

with x, # ¢ for all n € N such that the sequence (x,) converges to ¢ but the sequence
(f(x,)) does not converge to L.
(b) The function f does not have a limit at ¢ if and only if there exists a sequence (x,) in A
with x, # ¢ for all n € N such that the sequence (x,) converges to ¢ but the sequence
(f(xn)) does not converge in R.



Examples (a) lim (1/x) does not exist in R.

As in Example 4.1.7(d), let ¢(x) := 1/x for x > 0. However, here we consider ¢ = 0.
The argument given in Example 4.1.7(d) breaks down if ¢ = 0 since we cannot obtain
a bound such as that in (2) of that example. Indeed, if we take the sequence (x,) with
Xp, = 1/n for n € N, then lim(x,) =0, but ¢(x,) = 1/(1/n) = n. As we know, the
sequence (¢(x,)) = (n) is not convergent in R, since it is not bounded. Hence, by
Theorem 4.1.9(b), lina (1/x) does not exist in R.

. E »
(b) I1rr(1) sgn(x) does not exist.
X—

Let the signum function sgn be defined by

+1 for x>0,
sgn(x) := 0 for x=0,
—1 for x<O.

Note that sgn(x) = x/|x| for x # 0. (See Figure 4.1.2.) We shall show that sgn does not
have a limit at x = 0. We shall do this by showing that there is a sequence (x,) such that
lim(x,) = 0, but such that (sgn(x,)) does not converge.
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) -1
The signum function

Indeed, let x,, :== (—1)"/n for n € N so that lim(x,,) = 0. However, since
sgn(x,) = (—1)" for ne N,

it follows from Example 3.4.6(a) that (sgn(x,)) does not converge. Therefore lin})sgn(x)
does not exist. x—

(©f lina sin(1/x) does not exist in R.
X—t

Let g(x) := sin(1/x) for x # 0. (See Figure 4.1.3.) We shall show that g does not have
a limit at ¢ = 0, by exhibiting two sequences (x,) and (y,) with x, # 0 and y,, # 0 for all
n € N and such that lim(x,,) = 0 and lim(y,,) = 0, but such that lim(g(x,)) # lim(g(y,)).
I'n view of Theorem 4.1.9 this implies that l]_il:[l)g cannot exist. (Explain why.)

The function g(x) = sin(1/x)(x # 0)



Indeed, we recall from calculus that sint = 0 if t = nir forn € Z, and thatsin = +1
if t =Jm+2nnforn e Z Now let x, := 1 /nm for n € N; then lim(x,) = Oand g(x,) =
sinnt =0 for all ne N, so that lim(g(x,)) =0. On the other hand, let y, :=
(%J'T+2JI’H)_] for n e N; then lim(y,) =0 and g(y,) =sin(37 +2rn) =1 for all
n € N, so that lim(g(y,)) = 1. We conclude that limsin(1/x) does not exist. a

x—0

Limit Theorems
Definition LetA C R,letf : A — IR, and let ¢ € R be a cluster point of A. We say

that fis bounded on a neighborhood of ¢ if there exists a §-neighborhood V;(c) of c and a
constant M > 0 such that we have |f(x)| < M for all x € AN V;(c).

Theorem [fAC Randf:A — R has a limit at ¢ € R, then f is bounded on some
neighborhood of c.
Proof. If L := limf, then for & = 1, there exists § > 0 such that if 0 < |x — ¢| < §, then

| f(x) — L| < 1; hence (by Corollary 2.2.4(a)),
[f)| = L] < | f(x) — L] < 1.

Therefore, if x € AN Vs(c), x #c, then | f(x)| < |L| + 1. Ifc ¢ A, wetake M = |L| + 1,
while if ¢ € A we take M := sup{| f(c)|,|L| + 1}. It follows that if x € A N V;(c), then
| f(x)| < M. This shows that f is bounded on the neighborhood V;(c) of c. Q.ED.

Definition LetA C R and letfand g be functions defined on A to R. We define the
sum f + g, the difference / — g, and the product fg on A to R to be the functions given by

(f +8)(x):=flx)+g(x),  (f—g)lx):=Ff(x)—glx),
(fg)(x) :=f(x)g(x)
for all x € A. Further, if b € R, we define the multiple 5f to be the function given by
(bf )(x) := bf(x) forall xecA.
Finally, if A(x) # 0 for x € A, we define the quotient f// to be the function given by
(};:) (x):= % for all xeA.

Theorem LetA C R, let fand g be functions on A to R, and let ¢ € R be a cluster

point of A. Further, let b € R.

(a) If LLn}f =L and lim g = M, then:

X—

Jlri_q}(erg):L—kM, Li_r’rz(f—g}:L—M,
ii_lﬂ(fg) = LM, lim (bf) = bL.

X=si

(b)y Ifh:A—=R,if h(x)#0forall x€ A, and if limh = H # 0, then

X=—

o\ L
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Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alterna-
tively, it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (x,,) be
any sequence in A such that x,, # ¢ forn € N, and ¢ = lim(x,,). It follows from Theorem
4.1.8 that

lim(f(x,)) =L,  lim(g(x,)) = M.
On the other hand, Definition 4.2.3 implies that

(f8)(xn) =f(xa)g(xs)  for neN.
Therefore an application of Theorem 3.2.3 yields

“m((fg)(xu)) = “m(f(-xn)g(xnn
= [lim(f (x4))] lim(g(xa))] = LM,
Consequently, it follows from Theorem 4.1.8 that

lim (fg) = lim((£g) (x,)) = LM.

The other parts of this theorem are proved in a similar manner. We leave the details to
the reader. Q.E.D.

Remark LetA C R, andletf,, f5,..., f, be functions on A to R, and let ¢ be a cluster
point of A. If L; := limf, for k =1,...,n, then it follows from Theorem 4.2.4 by an

Induction argument that
L, +IQ+“'+LHZE_'2(f| +fo+ -+ ),

and

Ly Lo Ly =lim(f, -fy--f,).
In particular, we deduce that if L = limfand n € N, then

L" = lim (£(x))"

(a) Some of the limits that were established in Section 4.1 can be

proved by using Theorem 4.2.4. For example, it follows from this result that since

lim x = ¢, then lim x> = ¢2, and that if ¢ > 0, then

X K=

®) lim (x* 4+ 1) (" — 4) = 20.
It follows from Theorem 4.2.4 that

lim (x*+ 1) (x" —4) = (Ilin (x* + 1)) (1@_ (x* - 4))

xX—
=5-4=720.




W g lim (X —4) 4

i’ﬂxz+1_1im(x2+1)_5
Xx—2

Note that since the limit in the denominator [i.e., lim (xz + l) = 5] is not equal to O, then
Theorem 4.2.4(b) is applicable. X2

_ x> -4 4
@ lm=3"6"3
If we let f(x) := x> — 4 and h(x) := 3x — 6 for x € R, then we cannot use Theorem
4.2.4(b) to evaluate liﬂ% (f(x)/h(x)) because
H= lilr%h(x) =lim(3x—-6)=3-2-6=0.

x—2

However, if x # 2, then it follows that

¥-4 (x+2)(x-2) 1
=6 3x-2) 3T

Therefore we have

e S 1/
lim3r =6~ limz(x+2) _E(li"%Hz) -

Note that the function g(x) = (x> — 4)/(3x — 6) has a limit at x = 2 even though it is not
defined there.
(e) limi does not exist in R.

x—0 X

Of course linbl =1 and H := Iin:Ll'x = 0. However, since H = 0, we cannot use
K= K=+

Theorem 4.2.4(b) to evaluate Iin&(l,t'x). In fact, as was seen in Example 4.1.10(a), the

W

function ¢(x) = 1/x does not have a limit at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function _(p(x) = 1/x is not bounded on a nei_ ghborhood of x = 0.

(f) If p is a polynomial function, then limp(x) = p(c).

Let p be a polynomial function on R so that p(x) = a,x" + a,_ 1 x" ' + -+ a;x +
ay for all x € R. It follows from Theorem 4.2.4 and the fact that lim x* = * that

X—=C

limp(x) = lim [@x" + @n1 X" + -+ 4+ a;x + ag]
K=+l

K=

= lim (@,x") + lim (an-1x""") + -~ + lim (a1 x) + limag

= " + @y " e+ ag
= p(c).
Hence lim p(x) = p(c) for any polynomial function p.
(g If ;_;nd g are polynomial functions on R and if g(c) # 0, then
p(x) _ plc)

eq(x)  gqle)’



(g) If p and g are polynomial functions on R and if ¢(c) # 0, then
p(x) _ p(c)

im—— =—-—.
x—eg(x)  g(c)

Since g(x) is a polynomial function, it follows from a theorem in algebra that there are at most

a finite number of real numbers «y, . . . , «,, [the real zeroes of g(x)] such that q(a J,—) =0and

such that if x ¢ {a,...,am}, then g(x) # 0. Hence, if x ¢ {«;,...,a,}, we can define

If cis not a zero of g(x), then g(c) # 0, and it follows from part (f) that lim g(x) = g(¢) # 0.
Therefore we can apply Theorem 4.2.4(b) to conclude that e

p(x)  Mmp(x) e
}cLﬂ}q{x) B chi_r}}q(x) gle)’ -

Theorem LetACR,letf:A— R, and let ¢ € R be a cluster point of A. If
a<f(x)<b forall xe€ A, x+#c,

and if lim f exists, then a < lim f < b.

Proof. Indeed, if L =limf, then it follows from Theorem 4.1.8 that if (x,) is any
sequence of real numbers such that ¢ # x, € A for all n € N and if the sequence (x,)
converges to ¢, then the sequence (f(x»)) converges to L. Since a < f(x,) < b for all

n € N, it follows from Theorem 3.2.6 that a < L < b. Q.ED.
Squeeze Theorem LetACR,letf g h: A — R, and let ¢ € R be a cluster point
of A. If

f(x) < g(x) <h(x) forall xeA x+#e,

and if limf = L = limh, then limg = L.

Examples (a) lim 2 =0(x>0).

Let f(x) := x3/2 for x > 0. Since the inequality x < x'/? < 1 holds for 0 < x < 1
(why?), it follows that x* < f(x) = x3? < x for 0 < x < 1. Since

limx>=0 and limx=0
x=(} x—) !

it follows from the Squeeze Theorem 4.2.7 that lim x*/? = 0.
(b) il_l'l'(l] sin x = 0. -
It will be proved later (see Theorem 8.4.8), that
—x<sinx <x forall x>0.

Since lim (£x) = 0, it follows from the Squeeze Theorem that lim sinx = 0.
x—l x—)



(¢) lin}'cc:-sx =1.

It will be proved later (see Theorem 8.4.8) that

(1) | —3x*<cosx <1 forall xeR
Since lim (1 —1x?) =1, it follows from the Squeeze Theorem that limcos x = 1.
= X
-1
@ lim (ﬁ) - 0.
x—0 X

We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows
from the inequality (1) in part (c) that

—3x<(cosx—1)/x<0 for x>0

and that
0<(cosx—1)/x<—31x for x<0.

Now let f(x) := —x/2 for x > O and f(x) := 0 for x < 0, and let 4(x) := 0 for x > 0 and
h(x) := —x/2 for x < 0. Then we have
f(x) < (cosx—1)/x < h(x) for x#0.

Since it is readily seen that limf = 0 = llm h, it follows from the Squeeze Theorem that
lim (cosx — 1)/x = 0. -

X=

(e) lim (ﬁ) —1.
x— X

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be
proved later (see Theorem 8.4.8) that

x—%x3§sinx§x for x>0
and that
x <sinx <x—¢x' for x<0.

Therefore it follows (why?) that

| —1x* < (sinx)/x <1 forall x#0.

"\|._

But since ]in‘} (1-ix*)=1-1 hr%x = 1, we infer from the Squeeze Theorem that
X— A

lim (sinx)/x = 1.
x—0

(f) lﬂ(xsin(l/x)) =0.

Let f(x) = xsin(1/x) for x #0. Since —1 < sinz < 1 for all z € R, we have the
inequality

—|x| <f(x) = xsin(1/x) < |x|
forall x € R, x # 0. Since Iin[} |x| = 0,itfollows from the Squeeze Theorem that Iinaf =0.
Theorem Let ACR,/etf:A— R and let ¢ € R be a cluster point of A. If
limf >0 |respectively, lim f < 0],
X X =



then there exists a neighborhood Vi(c) of ¢ such that f(x) > 0 [respectively, f(x) < 0] for
all x e ANVs(c), x #c.

Proof. LetL := limf and suppose that L > 0. We take ¢ = %L > 0in Definition 4.1.4, and

obtain a number § > 0 such that if 0 < [x —¢| < & and x € A, then |f(x) — L| <3L.
Therefore (why?) it follows that if x € A N V;(¢), x # ¢, then f(x) > 1L > 0.
If L < 0, a similar argument applies. QED.

One-Sided Limits

There are times when a function f may not possess a limit at a point ¢, yet a limit
does exist when the function is restricted to an interval on one side of the cluster
point c.

Definition LetAc R andletf:A — R

(i) If c € Ris acluster point of the set A N (¢, o) = {x € A: x > c}, then we say that
L € R is a right-hand limit of f at ¢ and we write

xlirﬂf =L or xlierrf(x} =L
if given any ¢ > 0 there exists a § = §(¢) > 0 such that for all x € A with
0<x—c<é, then |f(x) — L] <e.
(i) Ifc € Ris acluster pointof the set A N (—oco,¢) = {x € A x < ¢}, then we say that
L € R is a left-hand limit of f at ¢ and we write

lim f=L or Ilim f(x)=1L

x—c— X—c—

if given any ¢ > O there exists a § > 0 such that for all x € A with 0 < ¢ — x <4,
then |f(x) — L| < .

Theorem LetA C R, letf :A — R,andletc € R be a cluster point of AN (¢, 00).

Then the following statements are equivalent:

(i) lim f = L.
X—(4

(ii) For every sequence (x,) that converges to ¢ such that x, € A and x, > c for all
n € N, the sequence (f(x,)) converges to L.

Theorem Let ACR, letf:A — R, and let ¢ € R be a cluster point of both
of the sets AN(c,00) and AN(—oo,c). Then limf=L if and only if
lim f = L= lim f. T

X-+c+ X—i—

Infinite Limits

Definition Let AC R, let f: A — R, and let ¢ € R be a cluster point of A.



(i) We say that f tends to oc as x — ¢, and write

lim f = oo,
X—r

if for every o € R there exists § = §(a) > 0 such that for all x € A with
0 < |x —c| <8, then f(x) > «.
(ii) We say that f tends to —oc as x — ¢, and write

lim f = —oc,

X—L

if for every B R there exists § =3(8) > 0 such that for all x € A with
- 0<|x—¢ <4, then f(x) < B.

Examples (a) lim (1/x%) = oo,

For, if @ > 0 is given, let § := 1/4/«. It follows that if 0 < |x| < §, then x* < 1/a so
that 1/x? > a.
(b) Let g(x) :=1/x for x # 0.

The function g does not tend to either oo or —oo as x — 0. For,ifa > Othen g(x) < «

for all x < 0, so that g does not tend to co as x — 0. Similarly, if 8 < Othen g(x) > gforall
x > 0, so that g does not tend to —oc as x — 0. O

Theorem Let ACR, let f,g: A — R, and let ¢ € R be a cluster point of A.
Suppose that f(x) < g(x) for all x € A, x # c.
(@) Iflimf = oo, then limg = oo.

(b) If limg = —oo, then limf = —oo.

X—=t

Proof. (a) If limf =oc and o € R is given, then there exists §(«r) > O such that if

0<|x—¢ < 3(:1) and x € A, then f(x) > a. But since f(x) < g(x) forall x € A, x # ¢,
it follows that if 0 < |x — ¢| < 8(«) and x € A, then g(x) > «. Therefore lim g = oo.

K=

The proof of (b) is similar. QE.D.

Definition Let A C R andlet f: A — R. If ¢ € R is a cluster point of the set
AN (c,00) ={x €A:x>c}, then we say that f tends to oo [respectively, —oo] as
x — ¢+, and we write

lim f = o0 [respectively, lim f = —oo],

X—c4 x—C+
if forevery a € R there is § = §(a) > 0 such that for all x € A with 0 < x — ¢ < §, then
f(x) > a [respectively, f(x) < «].
Examples (a) Letg(x):=1/xforx #0.
lim g does not exist. However, it is an easy exercise to show that

x—

_rlir&r(ux}:m and xl_l.rg;l_(l;'x):—oo_



Limits at Infinity

It is also desirable to define the notion of the limit of a function as x — oc. The definition as
X — —o¢ IS similar.

Definition Let A C R and let f : A — R. Suppose that (a,o0c) C A for some
a € R. We say that L € R is a limit of f as x — oo, and write

limf=L or limf(x)=L,
if given any ¢ > 0 there exists K = K(z) > a such that for any x > K, then |f(x) — L| < e.

Theorem Let ACR, let f:A — R, and suppose that (a,00) C A for some
a € R. Then the following statements are equivalent:

(i) L= limf.

(ii) For érlre"?‘i-' sequence (x,)inA N (a,o00) such that im(x,) = oo, the sequence ( f(x,))
converges fo L.

We leave it to the reader to prove this theorem and to formulate and prove the
companion result concerning the limit as x — —oo.
Examples (a) Let g(x) := 1/x for x # 0.
It is an elementary exercise to show that lim (1/x) =0= lim (1/x).
X—00 X—=00

A

(b) Letf(x):= 1/x*for x # 0.

The reader may show that lim (1/x*) = 0= lim (1/x?).
X=X —0e

li
X——00

Definition Let A C R and let f : A — R. Suppose that (a,00) C A for some
a € A. We say that f tends to oo [respectively, —oc] as x — oo, and write

lim f =00 [respectively, limlf = —oo]

XN—=D0

if given any « € R there exists K = K(«) > a such that for any x > K, then f(x) > «
[respectively, f(x) < al.

Theorem Let A€ R, let f:A — R, and suppose that (a,00) C A for some
a € R. Then the following statements are equivalent:
(i) lim f = oo [respectively, lim f = —co].

K A—00

(ii) For every sequence (x,) in (a,o0)such that lim(x,) = oo, then lim(f(x,)) = oo
[respectively, lim( f(xn)) = — o).

Theorem Let ACR, let f,g: A — R, and suppose that (a,o00) C A for some
a € R. Suppose further that g(x) > Ofor all x > a and that for some L € R, L # 0, we have

im 7))

x—oc g(x)

@) I L>0,then lim f = oo if and only if lim g = co.
(i) IfL <O, then lim f = —oo if and only if lim g = oco.

X—O0



Proof. (i) Since L > 0, the hypothesis implies that there exists a; > a such that

0<~ L<f(

f .
) g(x) 2 or X >a

Therefore we have (; L)g(x) < f(x) < (% L}g{x} for all x > a,, from which the conclusion
follows readily.
The proof of (ii) is similar. QE.D.

4.3.16 Examples (a) lim x" = oo for n € .
XK=

Let g(x) := x" for x € (0,00). Given« € R, let K := sup{1,«}. Then for all x > K,
we have g(x) = x" > x > «. Since « € R is arbitrary, it follows that lim g = co

(b) lim x" = oo for n € N, n even, andall.r_n x" —oofornEN‘n::)dd.
We will treat the case n odd,say n = 2k + 1 Wlth k=01, . Given a € R, let
K := inf{a, —1}. For any x < K, then since (x 2% > 1, we have x” (x)fx < x < e
Since o € R is arbitrary, it follows that lim x" = —oo.
X—— 00
(¢) Letp: R — IR be the polynomial function
p(x) = apx" + a, X"+ ayx + ay.
Then lim p =00 if a, >0, and lim p = —o0 if a, < 0.
Indeed, let g(x) := x" and apply Theorem 4.3.15. Since
p_(x)_a +a i +---4a : +a :
g(x) — Uy =1 X 1 x”_l 0 X" 3
it follows that lim (p(x)/g(x) »- Since lim g = oo, the assertion follows from

X—=D0 X—00

Theorem 4.3.15.

(d) Let p be the polynomial function in part (c). Then lim P =00 [respectively, —oo] if
n is even [respectively, odd] and a, > 0. e
We leave the details to the reader. m
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