Definition of the Limit of Function:

We now state the precise definition of the limit of a function f at a point c. It is important to note that in this definition, it is immaterial whether f is defined at c or not. In any case, we exclude c from consideration in the determination of the limit.

**Definition** Let  $A \subseteq \mathbb{R}$ , and let c be a cluster point of A. For a function  $f: A \to \mathbb{R}$ , a real number L is said to be a **limit of** f at c if, given any  $\varepsilon > 0$ , there exists a  $\delta > 0$  such that if  $x \in A$  and  $0 < |x - c| < \delta$ , then  $|f(x) - L| < \varepsilon$ .

**Remarks** (a) Since the value of  $\delta$  usually depends on  $\varepsilon$ , we will sometimes write  $\delta(\varepsilon)$  instead of  $\delta$  to emphasize this dependence.

**(b)** The inequality 0 < |x - c| is equivalent to saying  $x \neq c$ .

If L is a limit of f at c, then we also say that f converges to L at c. We often write

$$L = \lim_{x \to c} f(x)$$
 or  $L = \lim_{x \to c} f$ .

We also say that "f(x) approaches L as x approaches c." (But it should be noted that the points do not actually move anywhere.) The symbolism

$$f(x) \to L$$
 as  $x \to c$ 

is also used sometimes to express the fact that f has limit L at c.

If the limit of f at c does not exist, we say that f diverges at c.

Our first result is that the value L of the limit is uniquely determined. This uniqueness is not part of the definition of limit, but must be deduced.

**Theorem** If  $f: A \to \mathbb{R}$  and if c is a cluster point of A, then f can have only one limit at c.

**Proof.** Suppose that numbers L and L' satisfy Definition 4.1.4. For any  $\varepsilon > 0$ , there exists  $\delta(\varepsilon/2) > 0$  such that if  $x \in A$  and  $0 < |x - c| < \delta(\varepsilon/2)$ , then  $|f(x) - L| < \varepsilon/2$ . Also there exists  $\delta'(\varepsilon/2)$  such that if  $x \in A$  and  $0 < |x - c| < \delta'(\varepsilon/2)$ , then  $|f(x) - L'| < \varepsilon/2$ . Now let  $\delta := \inf\{\delta(\varepsilon/2), \delta'(\varepsilon/2)\}$ . Then if  $x \in A$  and  $0 < |x - c| < \delta$ , the Triangle Inequality implies that

$$|L - L'| \le |L - f(x)| + |f(x) - L'| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since  $\varepsilon > 0$  is arbitrary, we conclude that L - L' = 0, so that L = L'.

The definition of limit can be very nicely described in terms of neighborhoods.

We observe that because

$$V_{\delta}(c) = (c - \delta, c + \delta) = \{x : |x - c| < \delta\},\$$

the inequality  $0<|x-c|<\delta$  is equivalent to saying that  $x\neq c$  and x belongs to the  $\delta$ -neighborhood  $V_\delta(c)$  of c. Similarly, the inequality  $|f(x)-L|<\varepsilon$  is equivalent to saying that f(x) belongs to the  $\varepsilon$ -neighborhood  $V_\varepsilon(L)$  of L. In this way, we obtain the following result. The reader should write out a detailed argument to establish the theorem.



The limit of f at c is L

**Theorem** Let  $f: A \to \mathbb{R}$  and let c be a cluster point of A. Then the following statements are equivalent.

(i)  $\lim f(x) = L$ .

(ii) Given any  $\varepsilon$ -neighborhood  $V_{\varepsilon}(L)$  of L, there exists a  $\delta$ -neighborhood  $V_{\delta}(c)$  of c such that if  $x \neq c$  is any point in  $V_{\delta}(c) \cap A$ , then f(x) belongs to  $V_{\varepsilon}(L)$ .

# Examples (a) $\lim_{x\to c} b = b$ .

To be more explicit, let f(x) := b for all  $x \in \mathbb{R}$ . We want to show that  $\lim_{x \to c} f(x) = b$ . If  $\varepsilon > 0$  is given, we let  $\delta := 1$ . (In fact, any strictly positive  $\delta$  will serve the purpose.) Then if

0 < |x - c| < 1, we have  $|f(x) - b| = |b - b| = 0 < \varepsilon$ . Since  $\varepsilon > 0$  is arbitrary, we conclude from Definition 4.1.4 that  $\lim_{x \to c} f(x) = b$ .

**(b)**  $\lim_{x \to c} x = c$ .

Let g(x) := x for all  $x \in \mathbb{R}$ . If  $\varepsilon > 0$ , we choose  $\delta(\varepsilon) := \varepsilon$ . Then if  $0 < |x - c| < \delta(\varepsilon)$ , we have  $|g(x) - c| = |x - c| < \varepsilon$ . Since  $\varepsilon > 0$  is arbitrary, we deduce that  $\lim_{x \to c} g = c$ .

(c)  $\lim_{x \to c} x^2 = c^2$ .

Let  $h(x) := x^2$  for all  $x \in \mathbb{R}$ . We want to make the difference

$$|h(x) - c^2| = |x^2 - c^2|$$

less than a preassigned  $\varepsilon > 0$  by taking x sufficiently close to c. To do so, we note that  $x^2 - c^2 = (x + c)(x - c)$ . Moreover, if |x - c| < 1, then

$$|x| < |c| + 1$$
 so that  $|x + c| \le |x| + |c| < 2|c| + 1$ .

Therefore, if |x - c| < 1, we have

(1) 
$$|x^2 - c^2| = |x + c||x - c| < (2|c| + 1)|x - c|.$$

Moreover this last term will be less than  $\varepsilon$  provided we take  $|x-c| < \varepsilon/(2|c|+1)$ . Consequently, if we choose

$$\delta(\varepsilon) := \inf \bigg\{ 1, \frac{\varepsilon}{2|c|+1} \bigg\},$$

then if  $0<|x-c|<\delta(\varepsilon)$ , it will follow first that |x-c|<1 so that (1) is valid, and therefore, since  $|x-c|<\varepsilon/(2|c|+1)$  that

$$|x^2 - c^2| < (2|c| + 1)|x - c| < \varepsilon$$
.

Since we have a way of choosing  $\delta(\varepsilon) > 0$  for an arbitrary choice of  $\varepsilon > 0$ , we infer that  $\lim_{x \to c} h(x) = \lim_{x \to c} x^2 = c^2$ .

(d) 
$$\lim_{x \to c} \frac{1}{x} = \frac{1}{c}$$
 if  $c > 0$ .

Let  $\varphi(x) := 1/x$  for x > 0 and let c > 0. To show that  $\lim_{x \to c} \varphi = 1/c$  we wish to make the difference

$$\left| \varphi(x) - \frac{1}{c} \right| = \left| \frac{1}{x} - \frac{1}{c} \right|$$

less than a preassigned  $\varepsilon > 0$  by taking x sufficiently close to c > 0. We first note that

$$\left| \frac{1}{x} - \frac{1}{c} \right| = \left| \frac{1}{cx} (c - x) \right| = \frac{1}{cx} |x - c|$$

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some neighborhood of c. In particular, if  $|x - c| < \frac{1}{2}c$ , then  $\frac{1}{2}c < x < \frac{3}{2}c$  (why?), so that

$$0 < \frac{1}{cx} < \frac{2}{c^2}$$
 for  $|x - c| < \frac{1}{2}c$ .

Therefore, for these values of x we have

(2) 
$$\left| \varphi(x) - \frac{1}{c} \right| \le \frac{2}{c^2} |x - c|.$$

In order to make this last term less than  $\varepsilon$  it suffices to take  $|x-c|<\frac{1}{2}c^2\varepsilon$ . Consequently, if we choose

$$\delta(\varepsilon) := \inf \left\{ \frac{1}{2}c, \ \frac{1}{2}c^2\varepsilon \right\},$$

then if  $0 < |x - c| < \delta(\varepsilon)$ , it will follow first that  $|x - c| < \frac{1}{2}c$  so that (2) is valid, and therefore, since  $|x - c| < (\frac{1}{2}c^2)\varepsilon$ , that

$$\left|\varphi(x) - \frac{1}{c}\right| = \left|\frac{1}{x} - \frac{1}{c}\right| < \varepsilon.$$

Since we have a way of choosing  $\delta(\varepsilon) > 0$  for an arbitrary choice of  $\varepsilon > 0$ , we infer that  $\lim_{\epsilon \to 0} \varphi = 1/c$ .

(e) 
$$\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5}$$
.

Let  $\psi(x) := (x^3 - 4)/(x^2 + 1)$  for  $x \in \mathbb{R}$ . Then a little algebraic manipulation gives us

$$\left| \psi(x) - \frac{4}{5} \right| = \frac{\left| 5x^3 - 4x^2 - 24 \right|}{5(x^2 + 1)}$$
$$= \frac{\left| 5x^3 + 6x + 12 \right|}{5(x^2 + 1)} \cdot |x - 2|.$$

To get a bound on the coefficient of |x-2|, we restrict x by the condition 1 < x < 3. For x in this interval, we have  $5x^2 + 6x + 12 \le 5 \cdot 3^2 + 6 \cdot 3 + 12 = 75$  and  $5(x^2 + 1) \ge 5(1 + 1) = 10$ , so that

$$\left| \psi(x) - \frac{4}{5} \right| \le \frac{75}{10} |x - 2| = \frac{15}{2} |x - 2|.$$

Now for given  $\varepsilon > 0$ , we choose

$$\delta(\epsilon) \coloneqq \inf \bigg\{ 1, \, \frac{2}{15} \epsilon \bigg\}.$$

Then if  $0 < |x-2| < \delta(\varepsilon)$ , we have  $|\psi(x) - (4/5)| \le (15/2)|x-2| < \varepsilon$ . Since  $\varepsilon > 0$  is arbitrary, the assertion is proved.

## **Sequential Criterion for Limits**

**Theorem** (Sequential Criterion) Let  $f: A \to \mathbb{R}$  and let c be a cluster point of A. Then the following are equivalent.

- (i)  $\lim f = L$ .
- (ii) For every sequence  $(x_n)$  in A that converges to c such that  $x_n \neq c$  for all  $n \in \mathbb{N}$ , the sequence  $(f(x_n))$  converges to L.

**Proof.** (i)  $\Rightarrow$  (ii). Assume f has limit L at c, and suppose  $(x_n)$  is a sequence in A with  $\lim(x_n) = c$  and  $x_n \neq c$  for all n. We must prove that the sequence  $(f(x_n))$  converges to L. Let  $\varepsilon > 0$  be given. Then by Definition 4.1.4, there exists  $\delta > 0$  such that if  $x \in A$  satisfies

 $0 < |x - c| < \delta$ , then f(x) satisfies  $|f(x) - L| < \varepsilon$ . We now apply the definition of convergent sequence for the given  $\delta$  to obtain a natural number  $K(\delta)$  such that if  $n > K(\delta)$  then  $|x_n - c| < \delta$ . But for each such  $x_n$  we have  $|f(x_n) - L| < \varepsilon$ . Thus if  $n > K(\delta)$ , then  $|f(x_n) - L| < \varepsilon$ . Therefore, the sequence  $(f(x_n))$  converges to L.

(ii)  $\Rightarrow$  (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists an  $\varepsilon_0$ -neighborhood  $V_{\varepsilon_0}(L)$  such that no matter what  $\delta$ -neighborhood of c we pick, there will be at least one number  $x_\delta$  in  $A \cap V_\delta(c)$  with  $x_\delta \neq c$  such that  $f(x_\delta) \notin V_{\varepsilon_0}(L)$ . Hence for every  $n \in \mathbb{N}$ , the (1/n)-neighborhood of c contains a number  $x_n$  such that

$$0 < |x_n - c| < 1/n \qquad \text{and} \qquad x_n \in A,$$

but such that

$$|f(x_n)-L|\geq \varepsilon_0$$
 for all  $n\in\mathbb{N}$ .

We conclude that the sequence  $(x_n)$  in  $A \setminus \{c\}$  converges to c, but the sequence  $(f(x_n))$  does not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We conclude that (ii) implies (i).

Q.E.D.

**Divergence Criteria** Let  $A \subseteq \mathbb{R}$ , let  $f : A \to \mathbb{R}$  and let  $c \in \mathbb{R}$  be a cluster point of A.

- (a) If  $L \in \mathbb{R}$ , then f does **not** have limit L at c if and only if there exists a sequence  $(x_n)$  in A with  $x_n \neq c$  for all  $n \in \mathbb{N}$  such that the sequence  $(x_n)$  converges to c but the sequence  $(f(x_n))$  does **not** converge to L.
- **(b)** The function f does **not** have a limit at c if and only if there exists a sequence  $(x_n)$  in A with  $x_n \neq c$  for all  $n \in \mathbb{N}$  such that the sequence  $(x_n)$  converges to c but the sequence  $(f(x_n))$  does **not** converge in  $\mathbb{R}$ .

**Examples** (a)  $\lim_{x\to 0} (1/x)$  does not exist in  $\mathbb{R}$ .

As in Example 4.1.7(d), let  $\varphi(x) := 1/x$  for x > 0. However, here we consider c = 0. The argument given in Example 4.1.7(d) breaks down if c = 0 since we cannot obtain a bound such as that in (2) of that example. Indeed, if we take the sequence  $(x_n)$  with  $x_n := 1/n$  for  $n \in \mathbb{N}$ , then  $\lim(x_n) = 0$ , but  $\varphi(x_n) = 1/(1/n) = n$ . As we know, the sequence  $(\varphi(x_n)) = (n)$  is not convergent in  $\mathbb{R}$ , since it is not bounded. Hence, by Theorem 4.1.9(b),  $\lim_{x \to \infty} (1/x)$  does not exist in  $\mathbb{R}$ .

**(b)**  $\lim_{x\to 0} \operatorname{sgn}(x)$  does not exist.

Let the signum function sgn be defined by

$$sgn(x) := \begin{cases} +1 & \text{for } x > 0, \\ 0 & \text{for } x = 0, \\ -1 & \text{for } x < 0. \end{cases}$$

Note that sgn(x) = x/|x| for  $x \neq 0$ . (See Figure 4.1.2.) We shall show that sgn does not have a limit at x = 0. We shall do this by showing that there is a sequence  $(x_n)$  such that  $lim(x_n) = 0$ , but such that  $(sgn(x_n))$  does not converge.



The signum function

Indeed, let  $x_n := (-1)^n/n$  for  $n \in \mathbb{N}$  so that  $\lim(x_n) = 0$ . However, since  $\operatorname{sgn}(x_n) = (-1)^n$  for  $n \in \mathbb{N}$ ,

it follows from Example 3.4.6(a) that  $(sgn(x_n))$  does not converge. Therefore  $\lim_{x\to 0} sgn(x)$  does not exist.

(c)<sup>†</sup>  $\lim_{x\to 0} \sin(1/x)$  does not exist in  $\mathbb{R}$ .

Let  $g(x) := \sin(1/x)$  for  $x \neq 0$ . (See Figure 4.1.3.) We shall show that g does not have a limit at c = 0, by exhibiting two sequences  $(x_n)$  and  $(y_n)$  with  $x_n \neq 0$  and  $y_n \neq 0$  for all  $n \in \mathbb{N}$  and such that  $\lim_{n \to \infty} (x_n) = 0$  and  $\lim_{n \to \infty} (y_n) = 0$ , but such that  $\lim_{n \to \infty} (g(x_n)) \neq \lim_{n \to \infty} (g(y_n))$ . In view of Theorem 4.1.9 this implies that  $\lim_{n \to \infty} g$  cannot exist. (Explain why.)



The function  $g(x) = \sin(1/x)(x \neq 0)$ 

Indeed, we recall from calculus that  $\sin t = 0$  if  $t = n\pi$  for  $n \in \mathbb{Z}$ , and that  $\sin t = +1$  if  $t = \frac{1}{2}\pi + 2\pi n$  for  $n \in \mathbb{Z}$ . Now let  $x_n := 1/n\pi$  for  $n \in \mathbb{N}$ ; then  $\lim(x_n) = 0$  and  $g(x_n) = \sin n\pi = 0$  for all  $n \in \mathbb{N}$ , so that  $\lim(g(x_n)) = 0$ . On the other hand, let  $y_n := \left(\frac{1}{2}\pi + 2\pi n\right)^{-1}$  for  $n \in \mathbb{N}$ ; then  $\lim(y_n) = 0$  and  $g(y_n) = \sin\left(\frac{1}{2}\pi + 2\pi n\right) = 1$  for all  $n \in \mathbb{N}$ , so that  $\lim(g(y_n)) = 1$ . We conclude that  $\lim_{x \to 0} \sin(1/x)$  does not exist.  $\square$ 

### **Limit Theorems**

**Definition** Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A. We say that f is **bounded on a neighborhood of** c if there exists a  $\delta$ -neighborhood  $V_{\delta}(c)$  of c and a constant M > 0 such that we have  $|f(x)| \leq M$  for all  $x \in A \cap V_{\delta}(c)$ .

**Theorem** If  $A \subseteq \mathbb{R}$  and  $f : A \to \mathbb{R}$  has a limit at  $c \in \mathbb{R}$ , then f is bounded on some neighborhood of c.

**Proof.** If  $L := \lim_{x \to c} f$ , then for  $\varepsilon = 1$ , there exists  $\delta > 0$  such that if  $0 < |x - c| < \delta$ , then |f(x) - L| < 1; hence (by Corollary 2.2.4(a)),

$$|f(x)| - |L| \le |f(x) - L| < 1.$$

Therefore, if  $x \in A \cap V_{\delta}(c)$ ,  $x \neq c$ , then  $|f(x)| \leq |L| + 1$ . If  $c \notin A$ , we take M = |L| + 1, while if  $c \in A$  we take  $M := \sup\{|f(c)|, |L| + 1\}$ . It follows that if  $x \in A \cap V_{\delta}(c)$ , then  $|f(x)| \leq M$ . This shows that f is bounded on the neighborhood  $V_{\delta}(c)$  of c. Q.E.D.

**Definition** Let  $A \subseteq \mathbb{R}$  and let f and g be functions defined on A to  $\mathbb{R}$ . We define the sum f + g, the difference f - g, and the product fg on A to  $\mathbb{R}$  to be the functions given by

$$(f+g)(x) := f(x) + g(x), (f-g)(x) := f(x) - g(x),$$
  
 $(fg)(x) := f(x)g(x)$ 

for all  $x \in A$ . Further, if  $b \in \mathbb{R}$ , we define the **multiple** bf to be the function given by

$$(bf)(x) := bf(x)$$
 for all  $x \in A$ .

Finally, if  $h(x) \neq 0$  for  $x \in A$ , we define the **quotient** f/h to be the function given by

$$\left(\frac{f}{h}\right)(x) := \frac{f(x)}{h(x)}$$
 for all  $x \in A$ .

**Theorem** Let  $A \subseteq \mathbb{R}$ , let f and g be functions on A to  $\mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A. Further, let  $b \in \mathbb{R}$ .

(a) If 
$$\lim_{x \to c} f = L$$
 and  $\lim_{x \to c} g = M$ , then: 
$$\lim_{x \to c} (f + g) = L + M, \qquad \lim_{x \to c} (f - g) = L - M,$$
$$\lim_{x \to c} (fg) = LM, \qquad \qquad \lim_{x \to c} (bf) = bL.$$

**(b)** If  $h: A \to \mathbb{R}$ , if  $h(x) \neq 0$  for all  $x \in A$ , and if  $\lim_{x \to c} h = H \neq 0$ , then

$$\lim_{x\to c} \left(\frac{f}{h}\right) = \frac{L}{H}.$$

**Proof.** One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alternatively, it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let  $(x_n)$  be any sequence in A such that  $x_n \neq c$  for  $n \in \mathbb{N}$ , and  $c = \lim(x_n)$ . It follows from Theorem 4.1.8 that

$$\lim(f(x_n)) = L, \qquad \lim(g(x_n)) = M.$$

On the other hand, Definition 4.2.3 implies that

$$(fg)(x_n) = f(x_n)g(x_n)$$
 for  $n \in \mathbb{N}$ .

Therefore an application of Theorem 3.2.3 yields

$$\lim((fg)(x_n)) = \lim(f(x_n)g(x_n))$$
$$= [\lim(f(x_n))] [\lim(g(x_n))] = LM.$$

Consequently, it follows from Theorem 4.1.8 that

$$\lim_{x \to c} (fg) = \lim((fg)(x_n)) = LM.$$

The other parts of this theorem are proved in a similar manner. We leave the details to the reader.

Q.E.D.

**Remark** Let  $A \subseteq \mathbb{R}$ , and let  $f_1, f_2, \ldots, f_n$  be functions on A to  $\mathbb{R}$ , and let c be a cluster point of A. If  $L_k := \lim_{x \to c} f_k$  for  $k = 1, \ldots, n$ , then it follows from Theorem 4.2.4 by an Induction argument that

$$L_1 + L_2 + \cdots + L_n = \lim_{x \to c} (f_1 + f_2 + \cdots + f_n),$$

and

$$L_1 \cdot L_2 \cdots L_n = \lim (f_1 \cdot f_2 \cdots f_n).$$

In particular, we deduce that if  $L = \lim_{x \to c} f$  and  $n \in \mathbb{N}$ , then

$$L^n = \lim_{x \to \infty} (f(x))^n.$$

(a) Some of the limits that were established in Section 4.1 can be proved by using Theorem 4.2.4. For example, it follows from this result that since  $\lim_{x\to c} x = c$ , then  $\lim_{x\to c} x^2 = c^2$ , and that if c > 0, then

$$\lim_{x \to c} \frac{1}{x} = \frac{1}{\lim_{x \to c} x} = \frac{1}{c}.$$

**(b)**  $\lim_{x\to 2} (x^2+1)(x^3-4)=20.$ 

It follows from Theorem 4.2.4 that

$$\lim_{x \to 2} (x^2 + 1)(x^3 - 4) = \left(\lim_{x \to 2} (x^2 + 1)\right) \left(\lim_{x \to 2} (x^3 - 4)\right)$$
$$= 5 \cdot 4 = 20.$$

(c) 
$$\lim_{x\to 2} \left(\frac{x^3-4}{x^2+1}\right) = \frac{4}{5}$$
.

$$\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{\lim_{x \to 2} (x^3 - 4)}{\lim_{x \to 2} (x^2 + 1)} = \frac{4}{5}.$$

Note that since the limit in the denominator [i.e.,  $\lim_{x\to 2} (x^2 + 1) = 5$ ] is not equal to 0, then Theorem 4.2.4(b) is applicable.

(d) 
$$\lim_{x\to 2} = \frac{x^2-4}{3x-6} = \frac{4}{3}$$
.

If we let  $f(x) := x^2 - 4$  and h(x) := 3x - 6 for  $x \in \mathbb{R}$ , then we *cannot* use Theorem 4.2.4(b) to evaluate  $\lim_{x \to 2} (f(x)/h(x))$  because

$$H = \lim_{x \to 2} h(x) = \lim_{x \to 2} (3x - 6) = 3 \cdot 2 - 6 = 0.$$

However, if  $x \neq 2$ , then it follows that

$$\frac{x^2 - 4}{3x - 6} = \frac{(x+2)(x-2)}{3(x-2)} = \frac{1}{3}(x+2).$$

Therefore we have

$$\lim_{x \to 2} \frac{x^2 - 4}{3x - 6} = \lim_{x \to 2} \frac{1}{3} (x + 2) = \frac{1}{3} \left( \lim_{x \to 2} x + 2 \right) = \frac{4}{3}.$$

Note that the function  $g(x) = (x^2 - 4)/(3x - 6)$  has a limit at x = 2 even though it is not defined there.

(e)  $\lim_{x\to 0} \frac{1}{x}$  does not exist in  $\mathbb{R}$ .

Of course  $\lim_{x\to 0} 1 = 1$  and  $H := \lim_{x\to 0} x = 0$ . However, since H = 0, we *cannot* use Theorem 4.2.4(b) to evaluate  $\lim_{x\to 0} (1/x)$ . In fact, as was seen in Example 4.1.10(a), the function  $\varphi(x) = 1/x$  does not have a limit at x = 0. This conclusion also follows from Theorem 4.2.2 since the function  $\varphi(x) = 1/x$  is not bounded on a neighborhood of x = 0.

(f) If p is a polynomial function, then  $\lim_{x\to c} p(x) = p(c)$ .

Let p be a polynomial function on  $\mathbb{R}$  so that  $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  for all  $x \in \mathbb{R}$ . It follows from Theorem 4.2.4 and the fact that  $\lim_{x \to c} x^k = c^k$  that

$$\lim_{x \to c} p(x) = \lim_{x \to c} \left[ a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \right]$$

$$= \lim_{x \to c} \left( a_n x^n \right) + \lim_{x \to c} \left( a_{n-1} x^{n-1} \right) + \dots + \lim_{x \to c} \left( a_1 x \right) + \lim_{x \to c} a_0$$

$$= a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

$$= p(c).$$

Hence  $\lim_{x\to c} p(x) = p(c)$  for any polynomial function p.

(g) If p and q are polynomial functions on  $\mathbb{R}$  and if  $q(c) \neq 0$ , then

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}.$$

(g) If p and q are polynomial functions on  $\mathbb{R}$  and if  $q(c) \neq 0$ , then

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}.$$

Since q(x) is a polynomial function, it follows from a theorem in algebra that there are at most a finite number of real numbers  $\alpha_1, \ldots, \alpha_m$  [the real zeroes of q(x)] such that  $q(\alpha_j) = 0$  and such that if  $x \notin \{\alpha_1, \ldots, \alpha_m\}$ , then  $q(x) \neq 0$ . Hence, if  $x \notin \{\alpha_1, \ldots, \alpha_m\}$ , we can define

$$r(x) := \frac{p(x)}{q(x)}.$$

If c is not a zero of q(x), then  $q(c) \neq 0$ , and it follows from part (f) that  $\lim_{x \to c} q(x) = q(c) \neq 0$ . Therefore we can apply Theorem 4.2.4(b) to conclude that

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{\lim_{x \to c} p(x)}{\lim_{x \to c} q(x)} = \frac{p(c)}{q(c)}.$$

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f : A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A. If

$$a \le f(x) \le b$$
 for all  $x \in A, x \ne c$ ,

and if  $\lim_{x\to c} f$  exists, then  $a \le \lim_{x\to c} f \le b$ .

**Proof.** Indeed, if  $L = \lim_{x \to c} f$ , then it follows from Theorem 4.1.8 that if  $(x_n)$  is any sequence of real numbers such that  $c \neq x_n \in A$  for all  $n \in \mathbb{N}$  and if the sequence  $(x_n)$  converges to c, then the sequence  $(f(x_n))$  converges to c. Since  $a \leq f(x_n) \leq b$  for all  $c \in \mathbb{N}$ , it follows from Theorem 3.2.6 that  $c \in C$ .

**Squeeze Theorem** Let  $A \subseteq \mathbb{R}$ , let f, g, h:  $A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A. If

$$f(x) \le g(x) \le h(x)$$
 for all  $x \in A, x \ne c$ ,

and if  $\lim_{x\to c} f = L = \lim_{x\to c} h$ , then  $\lim_{x\to c} g = L$ .

**Examples** (a)  $\lim_{x\to 0} x^{3/2} = 0 \ (x > 0).$ 

Let  $f(x) := x^{3/2}$  for x > 0. Since the inequality  $x < x^{1/2} \le 1$  holds for  $0 < x \le 1$  (why?), it follows that  $x^2 \le f(x) = x^{3/2} \le x$  for  $0 < x \le 1$ . Since

$$\lim_{x \to 0} x^2 = 0 \quad \text{and} \quad \lim_{x \to 0} x = 0,$$

it follows from the Squeeze Theorem 4.2.7 that  $\lim_{x\to 0} x^{3/2} = 0$ .

**(b)**  $\lim_{x \to 0} \sin x = 0.$ 

It will be proved later (see Theorem 8.4.8), that

$$-x < \sin x < x$$
 for all  $x > 0$ .

Since  $\lim_{x\to 0} (\pm x) = 0$ , it follows from the Squeeze Theorem that  $\lim_{x\to 0} \sin x = 0$ .

(c)  $\lim_{x \to 0} \cos x = 1$ .

It will be proved later (see Theorem 8.4.8) that

(1) 
$$1 - \frac{1}{2}x^2 \le \cos x \le 1 \quad \text{for all} \quad x \in \mathbb{R}.$$

Since  $\lim_{x\to 0} \left(1 - \frac{1}{2}x^2\right) = 1$ , it follows from the Squeeze Theorem that  $\lim_{x\to 0} \cos x = 1$ .

$$(\mathbf{d}) \quad \lim_{x \to 0} \left( \frac{\cos x - 1}{x} \right) = 0.$$

We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows from the inequality (1) in part (c) that

$$-\frac{1}{2}x \le (\cos x - 1)/x \le 0 \quad \text{for} \quad x > 0$$

and that

$$0 \le (\cos x - 1)/x \le -\frac{1}{2}x$$
 for  $x < 0$ .

Now let f(x) := -x/2 for  $x \ge 0$  and f(x) := 0 for x < 0, and let h(x) := 0 for  $x \ge 0$  and h(x) := -x/2 for x < 0. Then we have

$$f(x) \le (\cos x - 1)/x \le h(x)$$
 for  $x \ne 0$ .

Since it is readily seen that  $\lim_{x\to 0} f = 0 = \lim_{x\to 0} h$ , it follows from the Squeeze Theorem that  $\lim_{x\to 0} (\cos x - 1)/x = 0$ .

(e) 
$$\lim_{x \to 0} \left( \frac{\sin x}{x} \right) = 1.$$

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be proved later (see Theorem 8.4.8) that

$$x - \frac{1}{6}x^3 \le \sin x \le x$$
 for  $x \ge 0$ 

and that

$$x \le \sin x \le x - \frac{1}{6}x^3$$
 for  $x \le 0$ .

Therefore it follows (why?) that

$$1 - \frac{1}{6}x^2 \le (\sin x)/x \le 1 \quad \text{for all} \quad x \ne 0.$$

But since  $\lim_{x\to 0} \left(1 - \frac{1}{6}x^2\right) = 1 - \frac{1}{6} \cdot \lim_{x\to 0} x^2 = 1$ , we infer from the Squeeze Theorem that  $\lim_{x\to 0} (\sin x)/x = 1$ .

(f)  $\lim_{x\to 0} (x\sin(1/x)) = 0.$ 

Let  $f(x) = x \sin(1/x)$  for  $x \neq 0$ . Since  $-1 \leq \sin z \leq 1$  for all  $z \in \mathbb{R}$ , we have the inequality

$$-|x| \le f(x) = x \sin(1/x) \le |x|$$

for all  $x \in \mathbb{R}$ ,  $x \neq 0$ . Since  $\lim_{x \to 0} |x| = 0$ , it follows from the Squeeze Theorem that  $\lim_{x \to 0} f = 0$ .

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f : A \to \mathbb{R}$  and let  $c \in \mathbb{R}$  be a cluster point of A. If

$$\lim_{x \to c} f > 0 \quad \left[ respectively, \lim_{x \to c} f < 0 \right],$$

then there exists a neighborhood  $V_{\delta}(c)$  of c such that f(x) > 0 [respectively, f(x) < 0] for all  $x \in A \cap V_{\delta}(c)$ ,  $x \neq c$ .

**Proof.** Let  $L := \lim_{x \to c} f$  and suppose that L > 0. We take  $\varepsilon = \frac{1}{2}L > 0$  in Definition 4.1.4, and obtain a number  $\delta > 0$  such that if  $0 < |x - c| < \delta$  and  $x \in A$ , then  $|f(x) - L| < \frac{1}{2}L$ . Therefore (why?) it follows that if  $x \in A \cap V_{\delta}(c)$ ,  $x \neq c$ , then  $f(x) > \frac{1}{2}L > 0$ .

If L < 0, a similar argument applies.

Q.E.D.

#### One-Sided Limits .

There are times when a function f may not possess a limit at a point c, yet a limit does exist when the function is restricted to an interval on one side of the cluster point c.

**Definition** Let  $A \in \mathbb{R}$  and let  $f : A \to \mathbb{R}$ .

(i) If  $c \in \mathbb{R}$  is a cluster point of the set  $A \cap (c, \infty) = \{x \in A : x > c\}$ , then we say that  $L \in \mathbb{R}$  is a **right-hand limit of** f **at** c and we write

$$\lim_{x \to c+} f = L \quad \text{or} \quad \lim_{x \to c+} f(x) = L$$

if given any  $\varepsilon > 0$  there exists a  $\delta = \delta(\varepsilon) > 0$  such that for all  $x \in A$  with  $0 < x - c < \delta$ , then  $|f(x) - L| < \varepsilon$ .

(ii) If  $c \in \mathbb{R}$  is a cluster point of the set  $A \cap (-\infty, c) = \{x \in A: x < c\}$ , then we say that  $L \in \mathbb{R}$  is a **left-hand limit of** f **at** c and we write

$$\lim_{x \to c^{-}} f = L \quad \text{or} \quad \lim_{x \to c^{-}} f(x) = L$$

if given any  $\varepsilon > 0$  there exists a  $\delta > 0$  such that for all  $x \in A$  with  $0 < c - x < \delta$ , then  $|f(x) - L| < \varepsilon$ .

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of  $A \cap (c, \infty)$ . Then the following statements are equivalent:

- (i)  $\lim_{x\to c+} f = L.$
- (ii) For every sequence  $(x_n)$  that converges to c such that  $x_n \in A$  and  $x_n > c$  for all  $n \in \mathbb{N}$ , the sequence  $(f(x_n))$  converges to L.

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of both of the sets  $A \cap (c, \infty)$  and  $A \cap (-\infty, c)$ . Then  $\lim_{x \to c} f = L$  if and only if  $\lim_{x \to c^+} f = L = \lim_{x \to c^-} f$ .

Infinite Limits \_

**Definition** Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A.

(i) We say that f tends to  $\infty$  as  $x \to c$ , and write

$$\lim_{x\to c} f = \infty,$$

if for every  $\alpha \in \mathbb{R}$  there exists  $\delta = \delta(\alpha) > 0$  such that for all  $x \in A$  with  $0 < |x - c| < \delta$ , then  $f(x) > \alpha$ .

We say that f tends to  $-\infty$  as  $x \to c$ , and write

$$\lim_{x\to c} f = -\infty,$$

if for every  $\beta \in \mathbb{R}$  there exists  $\delta = \delta(\beta) > 0$  such that for all  $x \in A$  with  $0 < |x - c| < \delta$ , then  $f(x) < \beta$ .

Examples (a)  $\lim_{x\to 0} (1/x^2) = \infty$ .

For, if  $\alpha > 0$  is given, let  $\delta := 1/\sqrt{\alpha}$ . It follows that if  $0 < |x| < \delta$ , then  $x^2 < 1/\alpha$  so that  $1/x^2 > \alpha$ .

**(b)** Let g(x) := 1/x for  $x \neq 0$ .

The function g does not tend to either  $\infty$  or  $-\infty$  as  $x \to 0$ . For, if  $\alpha > 0$  then  $g(x) < \alpha$ for all x < 0, so that g does not tend to  $\infty$  as  $x \to 0$ . Similarly, if  $\beta < 0$  then  $g(x) > \beta$  for all x > 0, so that g does not tend to  $-\infty$  as  $x \to 0$ . 

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f, g : A \to \mathbb{R}$ , and let  $c \in \mathbb{R}$  be a cluster point of A. Suppose that  $f(x) \leq g(x)$  for all  $x \in A, x \neq c$ .

- (a) If  $\lim_{x \to c} f = \infty$ , then  $\lim_{x \to c} g = \infty$ . (b) If  $\lim_{x \to c} g = -\infty$ , then  $\lim_{x \to c} f = -\infty$ .

**Proof.** (a) If  $\lim_{x\to c} f = \infty$  and  $\alpha \in \mathbb{R}$  is given, then there exists  $\delta(\alpha) > 0$  such that if  $0 < |x - c| < \delta(\alpha)$  and  $x \in A$ , then f(x) > a. But since  $f(x) \le g(x)$  for all  $x \in A, x \ne c$ , it follows that if  $0 < |x - c| < \delta(\alpha)$  and  $x \in A$ , then  $g(x) > \alpha$ . Therefore  $\lim g = \infty$ .

The proof of (b) is similar.

Q.E.D.

**Definition** Let  $A \subseteq \mathbb{R}$  and let  $f: A \to \mathbb{R}$ . If  $c \in \mathbb{R}$  is a cluster point of the set  $A \cap (c, \infty) = \{x \in A : x > c\}$ , then we say that f **tends to**  $\infty$  [respectively,  $-\infty$ ] as  $x \rightarrow c+$ , and we write

$$\lim_{x \to c+} f = \infty \text{ [respectively, } \lim_{x \to c+} f = -\infty \text{]},$$

if for every  $\alpha \in \mathbb{R}$  there is  $\delta = \delta(\alpha) > 0$  such that for all  $x \in A$  with  $0 < x - c < \delta$ , then  $f(x) > \alpha$  [respectively,  $f(x) < \alpha$ ].

**Examples** (a) Let g(x) := 1/x for  $x \neq 0$ .

lim g does not exist. However, it is an easy exercise to show that

$$\lim_{x \to 0+} (1/x) = \infty$$
 and  $\lim_{x \to 0-} (1/x) = -\infty$ .

#### **Limits at Infinity**

It is also desirable to define the notion of the limit of a function as  $x \to \infty$ . The definition as  $x \to -\infty$  is similar.

**Definition** Let  $A \subseteq \mathbb{R}$  and let  $f: A \to \mathbb{R}$ . Suppose that  $(a, \infty) \subseteq A$  for some  $a \in \mathbb{R}$ . We say that  $L \in \mathbb{R}$  is a **limit of** f **as**  $x \to \infty$ , and write

$$\lim_{x \to \infty} f = L \quad \text{or} \quad \lim_{x \to \infty} f(x) = L,$$

if given any  $\varepsilon > 0$  there exists  $K = K(\varepsilon) > a$  such that for any x > K, then  $|f(x) - L| < \varepsilon$ .

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$ , and suppose that  $(a, \infty) \subseteq A$  for some  $a \in \mathbb{R}$ . Then the following statements are equivalent:

- (i)  $L = \lim_{x \to \infty} f$ . (ii) For every sequence  $(x_n)$  in  $A \cap (a, \infty)$  such that  $\lim(x_n) = \infty$ , the sequence  $(f(x_n))$ converges to L.

We leave it to the reader to prove this theorem and to formulate and prove the companion result concerning the limit as  $x \to -\infty$ .

**Examples** (a) Let g(x) := 1/x for  $x \neq 0$ .

It is an elementary exercise to show that  $\lim_{x \to \infty} (1/x) = 0 = \lim_{x \to -\infty} (1/x)$ .

**(b)** Let  $f(x) := 1/x^2$  for  $x \neq 0$ .

The reader may show that  $\lim_{x\to\infty} (1/x^2) = 0 = \lim_{x\to-\infty} (1/x^2)$ .

**Definition** Let  $A \subseteq \mathbb{R}$  and let  $f: A \to \mathbb{R}$ . Suppose that  $(a, \infty) \subseteq A$  for some  $a \in A$ . We say that f tends to  $\infty$  [respectively,  $-\infty$ ] as  $x \to \infty$ , and write

$$\lim_{x \to \infty} f = \infty \quad \left[ \text{respectively}, \lim_{x \to \infty} f = -\infty \right]$$

if given any  $\alpha \in \mathbb{R}$  there exists  $K = K(\alpha) > a$  such that for any x > K, then  $f(x) > \alpha$ [respectively,  $f(x) < \alpha$ ].

**Theorem** Let  $A \in \mathbb{R}$ , let  $f : A \to \mathbb{R}$ , and suppose that  $(a, \infty) \subseteq A$  for some  $a \in \mathbb{R}$ . Then the following statements are equivalent:

- $\lim_{x \to \infty} f = \infty [respectively, \lim_{x \to \infty} f = -\infty].$
- (ii) For every sequence  $(x_n)$  in  $(a, \infty)$  such that  $\lim(x_n) = \infty$ , then  $\lim(f(x_n)) = \infty$ [respectively,  $\lim(f(x_n)) = -\infty$ ]

**Theorem** Let  $A \subseteq \mathbb{R}$ , let  $f, g: A \to \mathbb{R}$ , and suppose that  $(a, \infty) \subseteq A$  for some  $a \in \mathbb{R}$ . Suppose further that g(x) > 0 for all x > a and that for some  $L \in \mathbb{R}$ ,  $L \neq 0$ , we have

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

- (i) If L > 0, then  $\lim_{x \to \infty} f = \infty$  if and only if  $\lim_{x \to \infty} g = \infty$ .
- (ii) If L < 0, then  $\lim_{x \to \infty} f = -\infty$  if and only if  $\lim_{x \to \infty} g = \infty$ .

Since L > 0, the hypothesis implies that there exists  $a_1 > a$  such that Proof. (i)

$$0 < \frac{1}{2}L \le \frac{f(x)}{g(x)} < \frac{3}{2}L$$
 for  $x > a_1$ .

Therefore we have  $(\frac{1}{2}L)g(x) < f(x) < (\frac{3}{2}L)g(x)$  for all  $x > a_1$ , from which the conclusion follows readily.

The proof of (ii) is similar.

Q.E.D.

**4.3.16 Examples** (a)  $\lim_{x\to\infty} x^n = \infty$  for  $n \in \mathbb{N}$ .

Let  $g(x) := x^n$  for  $x \in (0, \infty)$ . Given  $\alpha \in \mathbb{R}$ , let  $K := \sup\{1, \alpha\}$ . Then for all x > K, we have  $g(x) = x^n \ge x > \alpha$ . Since  $\alpha \in \mathbb{R}$  is arbitrary, it follows that  $\lim_{x \to \infty} g = \infty$ .

 $\lim_{\substack{x \to -\infty \\ \text{We will treat the case } n \text{ odd, say } n = 2k+1 \text{ with } k = 0, 1, \dots \text{ Given } \alpha \in \mathbb{R}, \text{ let}$  $K := \inf\{\alpha, -1\}$ . For any x < K, then since  $(x^2)^k \ge 1$ , we have  $x^n = (x^2)^k x \le x < \alpha$ . Since  $\alpha \in \mathbb{R}$  is arbitrary, it follows that  $\lim_{n \to \infty} x^n = -\infty$ .

(c) Let  $p: \mathbb{R} \to \mathbb{R}$  be the polynomial function

$$p(x) := a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Then  $\lim_{x\to\infty} p = \infty$  if  $a_n > 0$ , and  $\lim_{x\to\infty} p = -\infty$  if  $a_n < 0$ . Indeed, let  $g(x) := x^n$  and apply Theorem 4.3.15. Since

$$\frac{p(x)}{g(x)} = a_n + a_{n-1} \left(\frac{1}{x}\right) + \dots + a_1 \left(\frac{1}{x^{n-1}}\right) + a_0 \left(\frac{1}{x^n}\right),$$

it follows that  $\lim_{x\to\infty} (p(x)/g(x)) = a_n$ . Since  $\lim_{x\to\infty} g = \infty$ , the assertion follows from Theorem 4.3.15.  $x \to \infty$ 

(d) Let p be the polynomial function in part (c). Then  $\lim_{x\to -\infty} p = \infty$  [respectively,  $-\infty$ ] if *n* is even [respectively, odd] and  $a_n > 0$ .

We leave the details to the reader.

References.

- 1.Intermediate Real Analysis by Emanuel Fischer
- 2.A Basic Course in Real Analysis by Ajit Kumar
- 3.Introduction of Real analysis by G.R Bartle