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Unit-4: 

Bose – Einstein Statistics  

 
INTRODUCTION: 

The B-E statistics determines the statistical distribution of the identical & indistinguishable 

particles which do not obey the Pauli’s exclusion principle. The particles which are obey the Bose – 

Einstein’s statistics are known as Bosons. 

Bosons are the particles which are identical, indistinguishable and do not obey the Pauli’s exclusion 

principle i.e. two or more particles (Bosons) can occupy the same quantum state, at the same time. They 

can occupy any number of quantum states.  Photons,  Meson’s, Kaon’s etc. are some examples of Bosons. 

A collection of non-interacting Bosons is called Bose gas. 

The Bosons have zero or integral spin because these particles are not obeying the Pauli’s exclusion 

principle. Bose used Planck’s hypothesis, according to which radiation in a temperature enclosure is 

composed of light quanta’s known as photons each of energy hE  . These photons in the enclosure are 

indistinguishable. 

 

Need of Quantum statistics:  
The classical statistics or Maxwell Boltzmann statistics explained the energy and velocity 

distribution of the molecules of an ideal gas to a fair degree of accuracy, but it failed to explain the energy 

distribution of electrons in the system of electron gas and that of photons in the photon gas. For example, 

take the case of the conduction of electrons in a metal. These conducting electrons are free to move within 

the volume of the metal, like molecules of a gas, confined to the volume of the containing vessel. But when 

M-B statistics applied to this electron gas, it is unable to explain the observed facts. Another example is 

that of a photon gas. A hollow enclosure at constant temperature T is filled with radiations (Photons). 

These photons move around, colliding with one another and with the walls. They exert pressure on the 

walls and behave like a gas. When M-B statistics applied to this photon gas, it is unable to explain the 

observed energy distribution of these photons. There are many other systems where classical statistics fails 

to explain and interpreted the observed facts.    

These difficulties have been resolved by the use of quantum statistics. We shall see later that 

quantum statistics includes M-B statistics as a limiting case. Quantum statistics is of two types: Bose 

Einstein statistics and Fermi Dirac statistics.  In this chapter we will discuss about Bose Einstein statistics 

and in next chapter we will discuss about Fermi Dirac statistics.  

 

Basic postulates (Assumptions) of quantum statistical mechanics: 
 In B-E statistics following assumptions are made: 

1. The particles of the system are identical and indistinguishable. 

2. Any number of particles can occupy a single cell in the phase space. 

3. The size of the cell cannot be less than 3h , where h is a Planck’s constant having a value 

.sec.1063.6 34 joule  

4. The number of phase space cells is comparable with the number of particles i.e. the occupation 

index .1
i

i

g

n
 

5. B-E statistics is applicable to particles with integral spin angular momentum in units of
2

h
. All 

particles which obey B-E statistics are known as Bosons. 

 

Bose – Einstein distribution law: 
 Let us consider a box divided into ig sections by  1ig partitions and in indistinguishable 

particles to be distributed among these sections. The permutations of in particles and  1ig  partition 

simultaneously is given by  !1 ii gn . But this includes also the permutations of in particles among 
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themselves and also  1ig  partitions among themselves, as both these groups are internally 

indistinguishable. Hence the actual number of ways in which in particles are to be distributed in ig cells 

(sublevels) is given by 

   
 

 !1!

!1





ii

ii

gn

gn
 

Therefore, the total number of distinguishable and distinct ways of arranging N particles in all the 

variable energy states is given by 

  
 

 
 

 












!1!

!1

!1!

!1

22

22

11

11

gn

gn

gn

gn
w  

  
 

 





i ii

ii

gn

gn
w

!1!

!1
     ---- (1) 

Since, in and ig are large numbers. Hence we may neglect 1 in the above equation (1). 

  
 





i i

ii

n

gn
w

!g!

!

i

      ---- (2) 

According to Stirling’s approximation 

  nnnni  log!log  

Also, Nn
i

i    and  UEn
i

ii   

Taking log in equation (2), we have 

    !log!log!loglog iiii gngnw  

Applying Stirling’s approximation we get 

            iiiiiiiiiiii gggnnngngngnw loglogloglog  

      iiiiiiiiiiii gggnnngngngn logloglog   ----- (3) 

Here, ig is not subject to variation and in varies continuously. 

For most probable distribution, 0log max w , hence, if the w of equation (3) represents a 

maximum, then 

     0logloglog max iiii nngnw       --- (4) 

As the total number of particles and total energy are constant, we have 

  0
i

in   and      ---- (5)  

0
i

ii nE        ----- (6) 

 Now, applying Lagrange method of undetermined multiplier i.e. multiplying equation (5) by 

 and equation (6) by  and adding to equation 4, we get 

      0loglog iiiii nEngn   

 The variations in are independent of each other. Hence we get 

  0log 








 
i

i

ii E
n

gn
  

  i
E

e
n

gn

i

ii
 










 
  

  i
E

e
n

g

i

i
 











 1  

  1


 i

i

i E
e

n

g 
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1



i

i

i E
e

g
n


     --- (7) 

 Since, 
kT

1
  

 

1




kT

E

e

g
n

i

i

i



     ---- (8) 

The relation (7) or (8) gives the most probable distribution of particles for a system obeying B-E statistics 

and is known as B-E distribution law. In other words equation (8) determines the most probable 

distribution of bosons among various energy levels (compartments).   

 

 

Bose – Einstein Gas and Degeneracy of Bose – Einstein Gas:   

An assembly of bosons (i.e. indistinguishable elementary particles of zero or integral spin) is 

termed as Bose – Einstein gas. 

Let us consider a perfect Bose – Einstein gas of n  bosons. Let these particles be distributed among 

quantum states such that nnnn ,,, 321 particles are distributed in quantum states of 

energies nEEEE ,,, 321 respectively. 

As the gas assumed to be perfect gas, the interaction between the particles is negligible so that the 

energy may regarded as entirely translational in character. Therefore the result obtained in this case will be 

particularly applicable to the mono-atomic gas.  

If ig is the degeneracy or statistical weight of thi  quantum sate then according to the Bose – Einstein 

distribution law, the most probable distribution is  

1



i

i
i E

e

g
n


 

Let, eD  then above expression will be 

 

1


i

i
i E

eD

g
n


  --- (1) 

We know that, for a single particle, the number of eigen states lying between momentum p and dpp   is  

 
3

24
)(

h

dpVp
gdppg S


  ---- (2) 

Where, )12(  SgS is the spin degeneracy factor caused by the particle of spin S. 

m

p

2

2

  

   mp 2  

   


dmdp
1

2

1
2   

Hence,  

 


 dmmdpp
2

1
222   

Now, the number of eigen states in energy range and  d is given by (from equation 2) 

 





 dmm
h

V
gdg S

2

1
22

4
)(

3
    --- (3) 

Where, )(g is density of states functions. Equation (3) represents the number of quantum states in 

between and  d .  
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From equations (1) & (3) we can get the number of particles in the energy range between 

 and  d will be (in the equation 1, we have to put the value of  dg )(  instead of ig ) 

 

1

1

2

1
22

4
)(

3













eD

dmm
h

V
gnd S  

 

1

2
4

)(
2

1

3









eD

d
m

h

Vm
gnd S  

 

1

2
4

)(
2

1

3





kT

S

eD

d
m

h

Vm
gnd




   ---- (4)  

kT

1
  

Let us put
kT

d
dxx

kT


 . Now equation (4) will be 

 
1

)(
2

4
)(

2
1

3 


xS
eD

kTdxxkT
m

h

Vm
gnd


  

1

)(
2

4
)(

2

1

2

3

3




xeD

dxxkT
m

h

mV
gnd S


  

  
1

)(
2

22
)(

2

1

2

3

3




xeD

dxxkT
m

h

mV
gnd S





  

  
1

22
)(

2

1

2

3

2













xeD

dxx
V

h

mkT
gnd S




  

But, previously, from the thermodynamic properties of gas molecule we found the translational partition 

function is 

  V
h

mkT
Z t 










2

3

2

2
 

Hence, 

  
1

2
)(

2

1




xeD

dxx
Z

g
nd t

S


  

Therefore total number of particles will be; 

  





0

2

1

0
1

2
)(

xeD

dxx
Z

g
ndn t

S


    --- (5) 

Hence, total energy of Bose – Einstein gas will be; 

  





0

2

1

1

2

xeD

dxx
Z

g
xkTnE t

S


  

  





0

2

3

1

2

xeD

dxxZg
kTE tS


   ---- (6) 

Now we have to evaluate the integrals in equations (5) and (6). 
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












x

x

De
De

xeD 1
1

1

1

1
 

  
















D

eD

e
x

x

1

1
   



321
1

1
xxx

x
 

  





































32

1
D

e

D

e

D

e

D

e xxxx

   














3

3

2

2

1
D

e

D

e

D

e

D

e xxxx

--- (7) 


 
















0

3

3

2

2

2

1

0

2

1

1
1

dx
D

e

D

e

D

e

D

e
x

xeD

dxx xxxx

  

 
















0

42

1

4

0

32

1

3

0

22

1

2

0

2

1
1111

dxex
D

dxex
D

dxex
D

dxex
D

xxxx  


2

34
2

33
2

32

4

1

2

1

3

1

2

1

2

1

2

1

2

1 

DDDD
 

   







 

2
34

2
33

2
32

4

11

3

11

2

111

2 DDDD


 

(Using Gama function )(
0

1 ndxxe nx 


  


2

1
)

2

1
(

2

1
)1

2

1
()

2

3
(

0

1
2

3

0

2
1

 







 dxxedxxe xx  

And for 2nd integration, let dtdx
t

xtx
2

1

2
2   

 
2

3
2

3

0
2

3
2

1

2
3

0

2

1

0

22

1

2

1

22

1

2

1
)

2

3
(

2

1
)(

2

1

2

1
)

2
(


  











 dttedte
t

dxex ttx  

And so on …..) No need to write in the exam 

 
Now, equation (5) will be 

  







 

2
34

2
33

2
32

4

11

3

11

2

111

2

2

DDDD
Z

g
n t

S 


 

  







 

2
34

2
33

2
32

4

11

3

11

2

111

DDDD
Zgn tS     ---- (8) 

Similarly, from equation (6), we have  
 

 

























0 3

3

2

2

2

3

0

2

3

1
1

dx
D

e

D

e

D

e

D

e
x

xeD

dxx xxxx

 

    












0

32

3

3

0

22

3

2

0

2

3
111

dxex
D

dxex
D

dxex
D

xxx  
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   
2

53
2

52

3

1

4

31

2

1

4

31

4

31


DDD
 

   







 

2
53

2
52

3

11

2

111

4

3

DDD


 

Now equation (6) will be 

  







 

2
53

2
52

3

11

2

111

4

32

DDD

Zg
kTE tS 


 

  







 

2
53

2
52

3

11

2

111

2

3

DDD
kTZgE tS   --- (9) 

Now dividing equation (9) by (8), we get: 



























2
34

2
33

2
32

2
53

2
52

4

11

3

11

2

111

3

11

2

111

2

3

DDDD
Zg

DDD
kTZg

n

E

tS

tS

 



























2
32

2
32

2
3

2
52

2
5

4

11

3

11

2

11
1

1

3

11

2

11
1

1

2

3

DDDD

DDD
kT

n

E
 

1

2
32

2
32

2
3

2
52

2
5

4

11

3

11

2

11
1

3

11

2

11
1

2

3



















 

DDDDD
kT

n

E
 

 


















 

2
32

2
32

2
3

2
52

2
5

4

11

3

11

2

11
1

3

11

2

11
1

2

3

DDDDD
kT

n

E
 (Using Binomial theorem) 









 

2
52

2
32

2
5

2
3

3

11

3

11

2

11

2

11
1

2

3

DDDD
nkTE  

The value of or D can be determined by equation (8), i.e. 

 







 

2
34

2
33

2
32

4

11

3

11

2

111

DDDD
Zgn tS  

 
















 

2
34

2
33

2
32

2

3

2

4

11

3

11

2

1112

DDDD
V

h

mkT
gn S


 --- (9.a) 

For ;1D  the terms 
432

1
,

1
,

1

DDD
can be neglected 

 
D

V
h

mkT
gn S

1)2(
3

2

3




    --- (9.b) 

   eV
h

mkT
gn S 3

2

3

)2(
    eD   

2

3

3

)2(

11

mkT

h

V

n

gD
e

S 

      --- (10) 
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Here, 
V

n
is the particle density. 

This equation (10) is very much essential to understand the degeneracy of Bose – Einstein gas.  

 

 

Degeneracy of Bose – Einstein Gas:   
From equation (10) we found; 

  

2

3

3

)2(

11

mkT

h

V

n

gD
e

S 

   

This expression we found when we have considered 1D . The above equation can be written as 

  
D

V
h

mkT
gn S

1)2(
3

2

3




  (From equation 9.b) 

Similarly for 1D , the equation (9) will be  

  kT
D

V
h

mkT
gE S 

1)2(

2

3
3

2

3


 

Now dividing above two equations, we get 

  kT
n

E

2

3
  

  nkTE
2

3
  


