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Fig. 2 

Unit-3: 

Quantum Theory of Radiation 
 

Spectral Distribution of Black Body Radiation:  
All bodies emit heat radiations from their surfaces by virtue of their temperature. This radiation is 

called radiant energy. The nature of radiation depends upon the temperature. At a low temperature, a body 

emits radiations which are principally of longer wavelength. At a high temperature, the proportion of 

shorter wavelength radiation increases. It is of interest to see how the energy of total radiation from a hot 

body is distributed among different wavelengths at various temperatures. In other words, we would like to 

find out how radiant energy at wavelength   depends upon frequency and temperature. 

 

 

 

 

 

 

 

 

 

 

 

Let us consider a hollow enclosure in the form of black body whose walls are maintained at a 

constant temperatureT and a small hole is made in the enclosure as shown in fig.1. The radiations coming 

out are called black body radiations. These radiations are electromagnetic in nature and are the 

characteristics of that temperature. The radiations are supposed to consist of quanta or photons of 

energy h , where h  is the Planck constant and  to frequency of radiation moving in all possible directions 

with the speed of light c . The momentum of the photon is equal to
c

h
. The radiation inside the hollow 

enclosure consist of a very large number of photons of different energies as they have different frequencies 

or wavelengths and they can be supposed to form a Photon gas. These radiations had been experimentally 

studied for a long time but the graph depicting energy distribution between the energy and the mean 

wavelength of each range could not be explained theoretically on the basis of classical physics. 

Experimentally, the variation of )(E  with is obtained as shown in the fig.2.  

In 1900, Max Planck gave the correct energy distribution on the basis of his quantum theory. 

Following are the results to explain the distribution of energy spectrum (spectral distribution of energy) of 

black body from the experimental curves of fig.2. 

(i) Black body radiation may be regarded as a gas consisting of photons. These photons do not interact 

with one another so that the photon gas is an ideal gas.  

(ii)  Photons are particles of zero rest mass. 

(iii) The number of photons inside the enclosure is very large and they have different energies. 

(iv) The photons have integral angular momentum in units of
2

h
. 

(v) The distribution of energy of the spectrum of black body radiations in not uniform over a wide 

range of wavelengths i.e. energy is not uniformly distributed in the spectrum of a black body at 

a given temperature. In other words energy for different wavelengths is different.  

(vi) For a given temperature, the energy of radiation emitted increases with the increase in wavelength 

and becomes maximum for a particular value of wavelength m , and then starts decreasing with 

the further increase in wavelength. 

(vii) An increase in temperature results in the increase in energy emission. 

(viii) For very long wavelengths and for very short wavelengths, emission of energy is very small. 

(ix)      With increase in temperature, peak of the curve shifts towards shorter wavelength side. 
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Fig. 3 

(x)  It has been observed that the product of maximum wavelength corresponding to maximum energy 

and absolute temperature for black body radiations is constant i.e. Tm constant, which is 

known as Wein’s displacement law. Thus this confirms the Wein’s displacement law.  

(xi)  Area under each curve represents the total energy emitted by the black body at a given 

temperature. This area increase with the increase of temperature and is found that the total 

energy emitted by the black body is directly proportional to the fourth power of the absolute 

temperature of the body i.e. 
44 TETE   

This is known as Stefan – Boltzmann’s law i.e. this verifies the Stefan’s law.  

 

Experimental arrangement:    
Lummer and Pringsheim experimentally studied the distribution of energy among the radiation 

emitted by a black body at different temperatures. The experimental set up for the study of black body 

radiations is shown in fig.3. Their experimental black body was a small aperture of an electrical heated 

chamber whose temperature was measured by a thermocouple. 

The radiations of an electrically heated black body (B) are collimated through a narrow slit and the 

collimated beam is incident on a stainless steel concave mirror 1M . The distance between the source 

and 1M is kept equal to the focal length of 1M  to make the reflected beam parallel. After being reflected, the 

parallel beam of radiations is made to fall on one of the faces of a rock-salt or fluorspar prism ABC placed 

on the rotating (or turn) table of the spectrometer. The emergent beam consists of rays of different 

wavelengths and this emergent beam falls on another concave mirror 2M  and is focused on a line 

bolometer placed behind the slit 2S . The bolometer is connected to a sensitive galvanometer. The turn table 

is rotated slowly so that the different parts of the radiation spectrum successively fall on the bolometer and 

the corresponding deflection in galvanometer connected in the bolometer circuit are read (noted). The 

intensity of each line is proportional to the deflection in the galvanometer. A number of observations were 

taken by maintaining the black body at various temperatures ranging from 2000K to 6000K. A graph 

between the energy E and the wavelength  of the radiation is plotted at different temperatures at which 

the black body was maintained and the variation of )(E  with is obtained as shown in the spectrum fig.2.   
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Planck’s Quantum Postulates (Assumptions): 
 In Planck’s quantum hypothesis the following assumptions are made: 

1. A black body radiation chamber is filled up not only with radiation, but also with simple harmonic 

oscillators or resonators (energy emitters) of the molecular dimensions, known as Planck’s 

oscillators or Planck’s resonators, which can vibrate with all possible frequencies. The vibration of 

the resonator entails one degree of freedom only.  

2. The oscillators or resonators cannot radiate or absorb energy continuously, but energy is emitted or 

absorbed in the form of packets or quanta called photons. Planck’s assumed that each photon has an 

energy h  where h  is the Planck’s constant, its value being equal to SecJoule 3410625.6  and  is 

the frequency of radiation. This assumption is the most revolutionary in character. In other word, 

the theory states that the exchange of energy between radiation and matter cannot take place 

continuously but only in certain multiples of the fundamental frequency of the resonator (energy 

emitter). As the energy of a photon is h , the energy emitted or absorbed is equal 

to  nhhhh 3,2,,0 , i.e., in multiples of some small unit, called as quantum.   

 

Planck’s Law of Blackbody Radiation:   
The classical theory could not explain the distribution of energy spectrum of a black body. Max 

Planck a German physicist in 1900 made an important hypothesis known as Planck’s hypothesis which 

states that  

“A black body radiation cavity filled up not only with radiation but also filled with simple 

harmonic oscillator. Hence the exchange of radiation energy with matter does not take place continuously 

but discontinuously and discretely with an integral multiple of small unit of energy called the quantum or 

photon.” 

Max Planck suggested that the energy of a photon is directly proportional to the frequency  of 

radiation. i.e. 

  E   

  hE   

Where h is called Planck’s constant and its value is JS341062.6  . 

Since, an oscillator frequency can only emit or absorb the radiation in units of magnitude of h  i.e. 

  nhE  ,   4,3,2,1n  

An oscillator can emit energy when it goes from one energy sate to another energy sate. The emission takes 

place only during the transition from a higher to lower energy sate. 

 

Average energy of Planck oscillator: 
The average energy per Planck oscillator is given by 

  
N

E
E    --- (1) 

Where, E is the total energy and N is the total number of Planck’s oscillators. 

Planck’s oscillator is an oscillator which can absorb energy or emit energy only in amounts which are 

integral multiples of Planck’s constant time the frequency  of the oscillator. 

Suppose, there are nNNNNN ,,,, 3210 numbers of Planck’s oscillators having energies 

 nhhhh ,3,2,,0 respectively then total numbers of oscillators are 

  nNNNNNN  3210  

And total energy, 

   nhNhNhNhNNE n 320 3210    --- (2) 

Since, accordance with Maxwell’s distribution law, the distribution of nN numbers of oscillators in n
th
 state having 

energy nh is, 
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Where, Bk is the Boltzmann constant. 

Therefore, 

The total number of Planck’s oscillators in accordance with Maxwell’s distribution law is given by 
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The total energy E becomes 
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Substituting the value of N and E from equation (4) and (5) in equation (1), we get  
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Now, dividing the numerator and denominator by
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, we get 
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