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Unit-1: Classical Statistics 

Postulates of classical statistical mechanics: 

The fundamental Postulates of statistical mechanics are: 

1. A gas may be assumed to be consisting of mobile molecules which behave like very small elastic 

spheres. 

2. All the cells in the phase space are of equal volume. 

3. All accessible microstates corresponding to possible macrostate are equally probable. This is called 

the postulate of equal a Priori probability. 

4. The equilibrium state of a gas corresponds to the macrostate of maximum probability. 

5. The total number of molecules is constant. 

 

Phase space: 

Phase space is a concept of multidimensional space in which the coordinates represent the variables 

required to specify the state of the system, in particular a six-dimensional space incorporating three 

dimensions of position and three of momentum.  

Phase space is a concept which is generalised by combining position space and momentum space. 

Imagine that a space is represented by six axes, viz., x, y, z, yx pp , and zp  axes and a point in space has co-

ordinates (x, y, z, yx pp , zp ). Thus, a point in such six dimensional space represents position as well as 

momentum and such a space is called phase space. In other words, a combination of the position space and 

momentum space is known as phase space. For each particle, there are six coordinates and in a system 

containing n particles, there are 6n coordinates giving complete information regarding position and 

momentum of all the n particles in the phase space for a dynamic system. Phase of the motion of a particle, 

i.e., position and momentum of the particle can be represented by a point in phase space. Such a point is 

called phase point corresponding to that particle. Classically, a particle can have definite position x and 

definite momentum xp and hence in two dimensional (x, xp ) phase space the state is represented by a 

point, as shown in Fig. 3.3. A small volume element in phase space is denoted by d  and is given by 

zyx dpdpdpdzdydxd   

 

 

 

 

 

 

 

Phase Cells: The phase space can be divided into a large number of cells, each of volume d . Such cells are 

called phase cells. In classical statistics (or Maxwell-Boltzmann statistics) there is no restriction on the 

volume of the phase cell which may be very small tending to zero also. In Quantum statistics, there is 

uncertainty. According to Heisenberg's uncertainty principle, we have 
  hdpdx x   

  hdpdy y   

hdpdz z   

So that  3hd   

Where h is the Planck’s constant of action having a value JS341063.6  . 

A more detailed analysis shows that  

  3hd   

The value of   331003343 109.21063.6 SJh    

This is the minimum size of the cell in quantum mechanics. Thus, due to uncertainty principle, a "point" in 

phase space is in fact a cell of minimum volume 3h . A point (x, y, z, yx pp , zp ) in phase space specifies that 

quantum mechanically, the particle lies somewhere in a cell of volume 3h centred at the point. 
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Macrostate and Microstate: 
The macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, 

volume, density or number of particles. A macrostate of the system is defined by the specification of the 

number of phase point in each phase cell of phase space. (A macrostate is a collection of variables that 

describe the bulk system such as total internal energy, volume and number of particles if we are talking 

about a gas for example. It could also describe related concepts which we will encounter latter such as 

temperature, pressure and chemical potential) 

A microstate is a huge collection of variables equal to the number of microscopic degrees of 

freedom in the system. Thus a given macrosate typically corresponds to a huge number of microstates i.e. 

different microstates can correspond to the same macrostate. A microstate of the system is defined as the 

specification that at which cell, the which phase point of system belongs temporarily i.e. microstates 

describes the different possible ways the system can achieve in a particular macrostate. Each possible 

combination of positions and velocities (momentum) of all molecules refers to a microstate of the system. 

In other words we may say that in order to define a microstate we must state to which cell each molecule 

of the system belongs temporarily. 

Let there be cell 1, cell 2, cell 3 and cell 4 in phase space. Suppose there are four phase points 

abcd in cell 1, three phase point efg  in cell 2, one phase point h  in cell 3 and two phase points jk  in cell 4 

as shown in figures. 

The macrostate of figure is specified by merely giving the phase points 2,1,3,4 4321  nnnn  of 

different cells. This also represents a particular microstate by specifying the positions of phase points abcd  

in cell 1, efg in cell 2 and so on. Now if the two phase points a  and e  from different cells are interchanged, 

then the microstate is changed because the positions of two phase points are changed, while the macrostate 

remains the same as the number of phase points in cells remains the same. Similarly, with the same 

macrostate we can consider different microstates. Thus many different microstates may correspond to the 

same macrostate.  

 

 

 

Thus, a microstates change every moment but macrostate does not. For every macrostate there are 

several microstates. All allowed microstates are equally likely i.e. possibility of each microstate to be at a 

particular time is equal. 

The microstates, which are allowed under given restriction (constrain) are called accessible 

microstates.  

e.g.: In the restriction that three molecules a, b, c be distributed in 2 box so that no molecule be 

outside the box. So the accessible microstate can be (ab, c), (a, bc) and unaccessible is (a, b), (a, c). 

One of the most fundamental postulates of statistical mechanics is that all accessible microstates 

corresponding to a possible macrostate are equally probable. 

 

Ensembles: 
If we have a collection of particles, we shall refer to a single particle as a system and to the 

collection of particles as a whole as an assembly. The collection of a large number of assemblies is called 

as an ensemble. The numbers of the ensemble are identical in features (like volume, energy, total number 

of particles etc.) and are known as element.  

Thus an ensemble is defined as a collection of a very large number of assemblies which are 

essentially independent of one another but which have been made macroscopically as identical as possible. 

By being macroscopically identical, we mean that each assembly is characterized by the same values of set 

of macroscopic parameters which uniquely determine the equilibrium state of the assembly. 

In an ensemble, the system play the same role as the non-interacting molecules do in a gas. The 

macroscopic identity of the systems constituting an assemble can be achieved by choosing the same values 

of some set of macroscopic parameters. These parameters uniquely determine the equilibrium state of the 

system. Accordingly three types of ensembles i.e., microcanonical, canonical and grand canonical are most 

widely used.  
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Canonical Ensemble 

Microcanonical Ensemble 

Microcanonical ensemble: 

The microcanonical ensemble is a collection of essentially independent assemblies having the same 

energy E, volume V, and number N of systems, all the systems are of the same type. The individual 

assemblies are separated by rigid, impermeable and well insulated walls (Fig. 1) such that the values of E, 

V and N are not affected by the presence of other systems. 

 

 

 

 

 

 

 

Canonical ensemble: 

The canonical ensemble is a collection of essentially independent assemblies having the same 

temperature T, volume V, and number of identical particles N. To assure ourselves that all the assemblies 

have the same temperature, we could bring each in thermal contact with a large heat reservoir at 

temperature T or we could simply bring all of the assemblies in thermal contact with each other. 

Fig. 2, represents symbolically a canonical ensemble. The individual assemblies are separated by 

rigid, impermeable, but diathermic walls. Since energy can be exchanged between the assemblies, they will 

reach a common temperature. 

Thus in canonical ensemble, system can exchange energy but not particles. 

 

 

 

 

 

 

 

 

 

 

 

Grand canonical ensemble: 

The microcanonical ensemble is a collection of independent assemblies having the same energy E, 

volume V and number N of system and the canonical ensemble is a collection of independent assemblies 

having the same temperature T, volume V and number of identical systems N. Thus in going from 

microcanonical ensemble to canonical ensemble, the condition of constant energy has been relaxed. This 

simplifies the calculations in thermodynamics where the exchange of energy takes place. Now the next 

logical step is to abandon the condition of total number of particles. Actually in chemical process this 

number varies and in various physical problems, e.g., radioactive decay, it is difficult to keep the number 

of particles constant. Such an ensemble in which exchange of energy as well as of particles takes place 

with the heat reservoir is known as grand canonical ensemble. 

The grand canonical ensemble is a collection of essentially independent assemblies having the 

same temperature T, volume V and a chemical potential  . 

In the grand canonical ensemble we then effectively have a collection of assemblies, each 

occupying a separate volume V, but which can exchange energy and molecules as well with each other. 

Fig.3, represents l grand canonical ensemble. The individual assemblies systems are separated by rigid, 

permeable, diathermic walls. 

The grand canonical ensemble will thus correspond to the situation when we know both the average 

energy and the average number of Particles in assembly, but are otherwise completely ignorant about the 

state of the system. 
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Thermodynamic Probability: 
A thermodynamic system is taken, having a cylinder and filled with an ideal gas of total number of 

molecules (N) and they are distributed in (k) energy cells. Let 1n  molecules enter in cell one, 2n  molecules 

enter in cell two, 3n  molecules enter in cell three and so on …., kn  molecules enter in cell k . So it is 

obvious that  

 Nnnnn k  321  

 Nn
k

i

i 
1

   --- (1) 

The number of ways to distribute 1n molecule in cell one is  

 
 !!

!
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N
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N


    --- (2)   C = Cell 

The no of ways to distribute 2n molecule in cell two will be 
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The no of ways to distribute 3n molecule in cell three will be 
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The no of ways to distribute kn molecules in cell k  will be 
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So, the total chances for such type of molecular distribution in all cells will be 
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Since, the total chance of distribution of N  molecules in k cells is  known as its thermodynamic 

probability. It is represented by w or  . Therefore, 
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(Thermodynamic probability: Thermodynamic probability (w) is the number of possible microstates of a 

particular macrostate.)  
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Distribution Law: 
In practices there are three most probable distribution law are used. They are 

1. Maxwell – Boltzmann distribution law (M-B): Maxwell Boltzmann statistics is applicable 

to the identical distinguishable particles of any spin. e.g: molecules of a gas. 
2. Bose – Einstein distribution law (B-E): Bose Einstein statistics is applied to the identical 

indistinguishable particles of zero or integral spin. These particles are called Bosons. 

Example: He-atom at low temperature, Photon, Phonon (energy generated by lattice 

vibration) 
3. Fermi – Dirac distribution law (F-D): Fermi Dirac statistics is applicable to identical 

indistinguishable particles of half integral spin. They obey Pauli’s exclusion principle and 

are called fermions. Example: electrons, Proton, Neutron etc.  
Maxwell Boltzmann Distribution Law: 

Let us consider a system of N distinguishable molecules of a gas. Suppose 1n of them have 

energy 1E , 2n have energy 2E …………. in have energy iE  and so on. Thus the entire assembly of 

molecules can be divided into different energy states with energies iEEEE ..,.........,, 321 and having 

innnn ..,.........,, 321 molecules. 

(i) The total number of molecules N  is constant. Hence 
 innnnN ................321 Constant 

0................321  innnnN   

0
i

in      -------------------- (1) 
(ii) The total energy E of the gas molecules is constant. Hence 

 ii nEnEnEnEE ................332211 Constant 

0................332211  ii nEnEnEnEE   

0
i

ii nE       -------------------- (2) 

 Suppose there are ig cells with the energy iE , the total no of ways in which in molecules can have the 

energy iE  is given by   ing i . Hence the total number of ways in which N molecules can be distributed among the 

various energies is 

       i
i

ngngngW ............2
2

1
11           

 The number of ways in which the groups of innnn ..,.........,, 321  particles can be chosen from N particles is 

given by 

 
!..!.........!!

!

321

2

innnn

N
W    

Therefore, the number of ways in which N molecules can be distributed among the possible energy level is given by 

       i
i

i

ngngng
nnnn

N
WWW .............

!..!.........!!

!
. 2

2
1

1

321

21    ----------- (3) 

Where W is called the thermodynamic probability of the system. 

 When the gas is in equilibrium then probability is maximum i.e.  0W  

 Again, When W is maximum, Wlog  is maximum, i.e. 0)(log W  

Therefore equation (3) becomes 

  iii gnnNW log!log!loglog  

By Stirling theorem,  nnnn  log!log  
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Therefore, 

    iiiii gnnnnNNNW loglogloglog  

   iiii gnnnNNW loglogloglog    -------------- (4) 

From equation (4), we have for maximum W 

    0loglog
1

0log iiiii

i

i ngnnn
n

nW   

    0logloglog iiiii ngnnnW   

From equation (1), 0
i

in  

   0loglog iiii ngnn       ------------------ (5) 

Let us now use the method of Lagrangian undetermined multipliers. For this purpose multiplying equation (1) by 

  and equation (2) by   and adding to equation (5), we get 

    0loglog iiii nEgn   

 0loglog  iii Egn   

 iii Egn   loglog  

 i
ii

E
eegn

       -------- (7) 

This equation (7) is called M-B statics or distribution law. In terms of temperature, 

 KT
E

eegn
i

ii

       ---------- (8) 

Where,  K
KT

,
1

 Boltzmann constant and T is the absolute temperature.  

 

Limitation of M-B distribution law: 
The M-B distribution law has lot of limitations. Some of them are discussed below: 

(i) It is applicable only to an isolated gas of identical molecules in equilibrium, for which the 

following conditions are satisfied: 

(a) The mean potential energy due to mutual interaction between the molecules is very small 

compared to their mean kinetic energy. 

(b) The gas is dilute, i.e. the number of molecules per unit volume is small, so that the average 

separation between the molecules is large and hence individual molecules can be 

distinguished.  

Therefore, the important results, such as expression for VCE,  and P , obtained by this method are 

the same as those derived by applying simple kinetic theory.  

(ii) The expression for the M-B count does not give correct expression for the entropy S of an ideal 

gas, and thus leads to the Gibbs paradox. To resolve the paradox, the expression must be 

divided by !N . 

(iii) In the expression for entropy of an ideal gas  

2

5
2

3

2

2
log e

h

mkT
NkS 











 

  If we put, 0T , we get, 

     0logNkS negative quantity.   0log   

 Thus, the expression for S does not satisfy the third law of thermodynamics. According to this law, as the 

temperature of the system approaches the absolute zero, the entropy approaches a constant value 0S , 

independent of the system. 
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(iv)  It cannot be applied to a system of indistinguishable particles. If we apply the M-B distribution law to the 
thermionic emission, we get the expression for the emission current density 

kTeTAJ




 2

1

0  

 Which is not correct. The correct expression which has been verified experimentally is  

    kTeTAJ




 2
0  

 

Thermodynamic functions (Entropy) of a Two – Energy levels system: (or Probability 

distribution and Entropy of a two energy level system) 

Let us consider a system of N-independent particles, each of magnetic moment  that can be parallel or 

antiparallel in an external magnetic field H . Let  be the energy associated with one orientation and   be the 

energy associated with another orientation, where B  . 

Let N and N be the number of particles of energy  and  respectively, then the total energy of an 

isolated system is 
     nNNNNE     --- (1) 

Where,   nNN        --- (2) 

If total number of particles is N then 

    NNN     --- (3) 

Solving equation (2) and (3), we get 

   nNN 
2

1
 and  nNN 

2

1
 --- (4) 

Now, we want to find out the number of accessible microstates of isolated system having constant 

energy E . The accessible microstates, according to formula, are given by 

  
!!

!
)(




NN

N
n    ---- (5) 

 !log!log!loglog   NNN  

   NNNNNNNNN loglogloglog  

       NNNNNNNNNNN loglogloglog  

   NNNNNNNNNNNN logloglogloglog  

  NNNNNNNN logloglogloglog  







 
N

N
N

N

N
N logloglog  









 





N

N
N

N

N
N logloglog  

Using equation (4), we get 

  

   






















 
N

nN

N
N

nN

N 2

1

log2

1

loglog  

  
























 

N

n
N

N

n
N 1

2

1
log1

2

1
loglog    --- (6) 

Since, 









2

2

2
1log

N

n

N

n

N

n
      --- (7) 

Using equation (7) in (6), we get 

  


































  2

2

2

2

22

1
log

22

1
loglog

N

n

N

n
N

N

n

N

n
N  
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  
















  2

2

2

2

22

1
log

22

1
loglog

N

n

N

n
NN

N

n

N

n
NN  

      







  2

2

22

1
loglog

N

n

N

n
NNNN  

  









2

2

22

1
loglog

N

n

N

n
NN  

  
N

n
N

22

1
loglog

2

     --- (8) 

As there are only two possible orientations, the probability of each orientation is
2

1
. As the total number of 

particles in N and then all are independent, therefore the probability of a given sequence of particle is
N










2

1
. 

The net magnetic moment =    nNN    

The probability )(MP of the system to possess the net magnetic moment nM  is given by 

 )(.
2

1
)( nMP

N









  

  )(logexp.
2

1
)( nMP

N









  

 






















N

n
NMP

N

22

1
logexp.

2

1
)(

2

 

 


































N

n
MP

NN

2
exp.

2

1
logexp.

2

1
)(

2

 

 


































N

n
MP

NN

2
exp.

2

1
.

2

1
)(

2

 

 N

n

eMP 2

2

)(


      ----- (9) 

This represents Gaussian distribution, which is symmetrical about the value 0n (fig.6.21). As expected the 
average value of magnetization in the absence of an external magnetic field is zero. The most probable value is 
same as the average value. The entropy is given by 
   logkS  
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If we use to approximation (8), we get 
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Using equation (1) for n , we get 
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If we plot a graph of
Nk

S
 versus 

N

E


we get, parabola as shown in fig.6.22. 

 

Negative Temperature: 

The temperature (T) is defined as the reciprocal of slop of entropy S versus energy E curve i.e. 
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Using equation (10), we get 
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Using equation (4) for N and N , we get 
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Simplifying, we get 
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At the conventional absolute zero temperature all the particles are in lower energy state  . 
  00   NNNNn , giving 0T and 0S at NE  . 

As the temperature is raised, the energy is supplied to system and particles jump from energy state   to energy 
state  , so the upper level  grows at 0T , till we have 0n , giving probability 2logNkS  , a state of 

maximum disorder and T . If more energy is supplied to system, the upper level becomes more populated 
than the lower level i.e.   NN and so 0n and we get a decrease in entropy S (more ordered state) and 

0T (negative temperature). Thus the system loses its normal behaviour. Thus the negative temperature T  

corresponds to higher energies than positive temperature T . 

For a system to have negative temperature, the following conditions must be satisfied. 
(i) It must have a finite upper limit to the energy spectrum. 
(ii) It must be in thermal equilibrium. 
(iii) It must have negative temperature states isolated from positive temperature state. 


