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Fluid Dynamics  

A fluid is a substance which deforms continuously or flows when subjected to external shearing forces.  

Fluid dynamics or Hydrodynamics is that branch of science which is concerned with the study of the motion of 

fluids or that of bodies in contact with fluids. Fluids are classified as liquids and gases. The former are not sensibly 

compressible except under the action of heavy forces whereas the latter are easily compressible and expand to fill any 

closed space.  

Characteristics of Fluids (Liquid or Gas) 

1. It has no definite shape of its own, but conforms to the shape of the containing vessel. 

2. Even a small amount of shear force exerted on a fluid will cause it to undergo a deformation which 

continues as long as the force continues to be applied.  

3. It is interesting to note that a solid suffers strain when subjected to shear forces whereas a fluid suffers rate 

of strain i.e. it flows under similar circumstances.  

Some basic properties of fluid: 

1. Density, Specific Weight and Specific Volume: 

The density of a fluid is defined as the mass per unit volume. Mathematically, the density   at a point P  may be 

defined as  
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Where, v is the volume element around P and m  is the mass of the fluid within v . 

The specific weight  of a fluid is defined as the weight per unit volume. Thus, g  , where g is the 

acceleration due to gravity. 

The specific volume of a fluid is defined as the volume per unit mass and is clearly the reciprocal of the density. 

2. Pressure:  

When a fluid is contained in a vessel, it exerts a force at each point of the inner side of the vessel. Such a force 

per unit area is known as pressure. Mathematically, the pressure p  at a point P may be defined as  
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Where, S is an elementary area around P and F  is the normal force due to fluid on S . 

 

Types of fluid flows: 

1. Laminar or Streamline flows: 

A flow,  in which each fluid particle traces out a definite curve and the curves traced out by any two different 

fluid particles do not intersect, is said to be laminar. The following figure illustrates laminar flows. 

 

 

 

 

 

 

 

 

Let us consider a liquid flowing in a pipe. Let the velocity of flow be 1v at A, 2v  at B and 3v at C. If as 

time passes, the velocities at A, B and C are constant in magnitude and direction, then the flow is said to be 

steady. In a steady flow, each particle follows exactly the same path and has exactly the same velocity as its 

predecessor. In such a case, the liquid is said to have an orderly or streamline flow. Thus, a liquid motion is 

called streamline motion when the velocity at every point in the liquid remains constant both in its 

magnitude and direction. 

 The flow is steady or streamlined only as long as the velocity of the liquid does not exceed a limiting 

value, called the critical velocity. When the external pressure causing the flow of the liquid is excessive, the 

motion of the liquid takes place with a velocity greater than the critical velocity and the motion becomes 

unsteady or turbulent. 
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2. Turbulent flow: 

A flow,  in which each fluid particle does not trace out a definite curve and the curves traced out by 

fluid particles intersect, is said to be turbulent.  

A liquid motion is called turbulent motion when the velocity at every point in the liquid is not constant 

and its magnitude is large. Further, the liquid moves in a zig-zag path. This disorderly motion takes place when 

the pressure difference between the ends to the tube is large. The following figure illustrates turbulent flows. 

 

 

 

 

 

 

 

 

 

3. Steady and unsteady flows:  

A flow, in which properties and conditions (Say P) associated  with the motion of the fluid are 

independent of the time so that the flow pattern remains unchanged with time, is said to be steady. 

Mathematically, we may write 0/  tP .Here P may be velocity, density, pressure, temperature etc. On the 

other hand, a flow, in which properties and conditions associated with the motion of the fluid depend on the time 

so that the flow pattern varies with time, is said to be unsteady.   

 

4. Uniform and non-uniform flows:  
A flow, in which the fluid particles possess equal velocities at each section of the channel or pipe, is 

called uniform. On the other hand, a flow, in which the fluid particles possess different velocities at each section 

of the channel or pipe, is called non-uniform. These terms are usually used in connection with flow in channel. 

 

5. Rotational and Irrotational flows:  
A flow, in which the fluid particles go on rotating about their own axes, while flowing, is said to be 

rotational. On the other hand, a flow, in which the fluid particles do not rotate about their own axes, while 

flowing, is said to be irrotational.   

 

6. Barotropic flows: The flow is said to be barotropic when the pressure is a function of the density. 

 

Critical Velocity: 

Critical velocity of a liquid is the velocity below which the motion of the liquid is orderly and above which the 

motion of the liquid becomes turbulent.  

The expression for critical velocity is  

  
r

K
vc




  

Here,  is the coefficient of viscosity of the liquid,  is the density of liquid, r is the radius of the tube through 

which the liquid flows and K is constant, called Reynold’s number. Its value is 1000 for narrow tubes. Reynold’s 

number determines the nature of the liquid motion through a tube. 

 

Velocity of fluid particle: 

Let the fluid particle be at P at any time t and let it be at Q at time tt   such that rOP 


and rrOQ 


. Then 

in the interval t , the movement of the particle is rPQ 


and hence the velocity of the liquid particle q at P is given by 
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Clearly, q is a function of tr & .Hence it can be expressed as  trfq , . If wvu ,, are the components of q  along 

the axes, we have 
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 kwjviuq ˆˆˆ   

 

  

Acceleration of a fluid particle: 

Let a fluid particle moves from  zyxP ,, at time t to  zzyyxxQ   ,, at time tt  . Let kwjviuq ˆˆˆ   be 

the velocity of the fluid particle at P and qq   be the velocity of the same fluid particle at Q . Then, we have 
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Now, making 0t and using equation (2), the equation (1) reduces to  
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Using equation (4), the equation (3) may be re-written as 
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Which shows that the acceleration a of a fluid particle of fixed identity can be expressed as the material derivative of 

the velocity vector q .  

 

Continuity equation or conservation of mass: 

The law of conservation of mass states that fluid mass can be neither created nor destroyed. The equation of 

continuity aims at expressing the law of conservation of mass in a mathematical form. Thus, in continuous motion, the 

equation of continuity expresses the fact that the increase in the mass of the fluid within any closed surface drawn in the 

fluid in any time must be equal to the excess of the mass that flows in over the mass that flows out. 

Let us consider a fixed closed surface S enclosing a volumeV in the region occupied by a moving fluid. Let n̂ be 

a unit outward normal vector drawn on the surface element S , where fluid velocity is q and fluid density is  .Invert 

normal velocity is qn  ˆ .   

Thus,  

Mass of the fluid entering across the surface S in unit time i.e. Rate of mass flow across S is 

  Sqn   ˆ  

Therefore,  

Total mass of the fluid entering across the surface S in unit time i.e. Total rate of mass flow across S  

       
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Since, the mass of the fluid within the volumeV  is 
V

dV . Therefore, rate of increase (generation) of the fluid 

within the volumeV  i.e. Total rate of increase of mass of fluid within S is  
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Suppose that the region V of the fluid contains neither sources nor sinks (i.e. there are no inlets or outlets 

through which fluid can enter or leave the region). Then by the law of conservation of the fluid mass, the rate of 

increase of the mass of fluid withinV  must be equal to the total rate of mass flowing intoV . Hence from equation (1) 

and (2), we have  
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Since, S is arbitrary so V is also arbitrary. Therefore, integral vanishes and we get 
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Equation (3) is called the Eulerian equation of continuity or the equation of conservation of mass and it holds 

at all points of fluid free from sources and sinks. 

Special Cases: 

1. Since   qqq   , other forms of equation (3) are 
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2. For an incompressible and heterogeneous fluid the density of any fluid particle is invariable with time so 
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Continuity Equation in fluid dynamics in three dimensions (in Cartesian Coordinates):  
The basic continuity equation is an equation which describes the change of an intensive property. An intensive 

property is something which is independent of the amount of material you have. For instance, temperature would be an 

intensive property; heat would be the corresponding extensive property.  

The equation based on the principle of conservation of mass is called continuity equation. Let us consider a fluid 

element of length dydx, and dz  in the direction of x, y and z. Let vu, u, and w  are the inlet velocity component in x, y 

and z direction respectively. 

 

Now, mass of the fluid entering the face ABCD (inflow) per second  
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Mass of fluid leaving the face EFGH (outflow) per second is  
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Therefore,  

Total rate of increase in mass or net gain of mass i.e. total net mass of fluid remained in the element per unit 

time 
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By the law of conservation of mass, there is no accumulation of mass i.e. mass is neither created nor destroyed in the 

fluid element. So, net increase of mass per unit time in the fluid element must be equal to the rate of increase of mass 

of fluid in the element. 
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Equating equation (1) and (2), we get 
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For steady flow (i.e. density does not change with time), 0
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If the fluid is incompressible, then  is constant and the above equation becomes as  
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This is the continuity equation in three-dimension. 

For a 2D flow, the component  0w  
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Poiseuille’s equation for flow of a liquid through a pipe: 

Let us consider a liquid flowing trough horizontal tube of small diameter. The liquid can supposed to be 

composed of a number of co-axial cylindrical layers of varying radius whose axis coincides with the axis of the tube. 

The cylindrical layer in contact with the sides of the tube is permanently at rest due to the force of adhesion while that 

moving along the axis of the tube moves with maximum velocity. Thus, there exists a velocity gradient between 

different layers. A cross-sectional view of the velocity distribution of different layers is shown in fig.1,  

  

 

 

 

 

 

Poiseuille’s formula is the formula which tells us about the volume of liquid flowing per second across any 

cross-section of tube.  

 Let us consider a tube AB of length l and radius r held horizontally as shown in fig.2 (a). The liquid of co-

efficient of viscosity  flows through the tube from A to B. Consider an elementary cylindrical layer of the liquid having 

internal radius x  and thickness dxx  . The velocity of layer on the inside of this elementary cylindrical layer is slightly 

greater than that of outside one. Let their velocities be v  and dvv   respectively. 

 Due to the property of viscosity, the upper layer exerts back-ward drag F upon the lower layer and it is given 

by (According to Newton law of viscous flow, viscous force F acting tangentially on the layer of the liquid, opposite to 

the direction of flow is given by) 

  
dx

dv
AF   

Negative sign is due to the reason that if x increases, v decreases i.e. dv and dx posses opposite signs. Here, Area of 

cross-section, xlA 2  

Fig.1: Flow of liquid through a tube 

Fig.2: Cylindrical element inside a tube 

Fig.2 (a) 
Fig.2 (b) 

Fig.2 (c) 
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dx

dv
xlF   2    -------- (1) 

Let 1P and 2P be the pressures on the two sides of tubes. 

Force due to pressure 1P (from left to right), 1
2

1 PxF   

Force due to pressure 2P (from right to left), 2
2

2 PxF   

If the liquid flows from left to right, it will flow only if 21 PP  . 

Therefore,  

Net force on the liquid (from left to right), 

     PxPPxFFF 2
21

2
21    ---- (2) 

Where, 21 PPP  is the difference of pressure on the two ends of the tube. 

In equilibrium, when the liquid flows in steady flow 

    FF   
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Integrating, we get 
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Here, c is the constant of integration. Since the layer of liquid in contact with the sides of the tube is at rest i.e. at 

0,  vrx . Therefore from equation (3), we get 
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Substituting the value of c in equation (3), we get 
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P
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   ------ (4) 

Equation (4) gives the velocity of the liquid flowing through the tube. 

A cross-sectional view of the flow of liquid is shown in fig.2 (b). Shaded region gives the face area of the 

cylindrical layer. Imagine the face area to be cut and spread in the form of rectangle as shown in fig.2(c) 

Now, the volume of liquid that flows out per second through the cylindrical shell or Rate of flow of liquid 

through the tube is 

  vshellthisthroughliquidofflowofVelocityshelltheoftioncrossofAreadV  sec  
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Therefore, the total volume of liquid flowing per second across any cross-section of the tube is  
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Fig.3 
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Equation (5) is called the Poiseuille’s equation or Poiseuille’s formula. This relation holds good only for tubes of 

smaller diameter and for stream line flow.  

 Figure.3 shows the variation of rate of flow (V ) i.e. volume of liquid flowing per second with the pressure 

difference P  between the two ends. For smaller P ,  region OA  corresponds to the state when the velocity of flow of 

liquid is less than the critical velocity cv  so that the flow is streamlined. In this region, PV  as stated by Poiseuille’s 

formula. On increasing the pressure beyond A , the velocity of liquid increases beyond cv ,  thus making the flow 

turbulent. NowV  is not proportional to P  but it is proportional to P . So Poiseuille’s formula does not hold good in 

region AB.  

Again, if the height of the liquid above the axis of the tube is ‘h’ then Pressure 
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Limitation of Poiseuille’s formula: 

 

1. The formula applies only to streamline flow through the tube. The flow is streamline when the velocity of flow 

is less than critical velocity. Since critical velocity of a liquid is inversely proportional to the radius of the tube, 

this flow will tend to become turbulent in case of tubes of wide bore. Thus, Poiseuille’s formula holds good 

for narrow tube only. 

2. The formula breaks down if the liquid layers in contact with the walls are not stationary. For it the pressure 

difference across the capillary should be kept low so that liquid flows very slowly through the tube. 

3. Poiseuille’s formula holds good only so long as the tube is horizontal and escaping fluid has negligible kinetic 

energy. 

4. Poiseuille’s formula is not valid for gas.   

     

  


