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Small Amplitude Oscillations

In this category, we will discuss about the mechanics of the particles having small amplitude of oscillations. In
case of mutually interacting particles, the motion of one particle in influenced by other particles and so the entire system
develops a different mode of motion i.e. called ‘normal mode of motion’.

Stability Analysis:
By stability analysis we mean, finding equilibrium position and investigating whether the given equilibrium is
stable or unstable.
Equilibrium criteria in one dimension:
If V be the potential energy then the relation between force and potential energy is
dv
dx
If the system in equilibrium then net force on the system is zero. So
F, =0
v
dx
This is the condition of equilibrium. It gives the equilibrium points or positions. Let the variation of potential

ie.

with distance x is shown in figure-1. In V(x) versus 'x' graph the points where?j—v =0 i.e. at the point where tangent to
X

the curve is parallel to x-axis are the equilibrium points. Therefore in figure, points A, B, C and D are equilibrium
points.
Stable Equilibrium Points:

A point is stable equilibrium point if a particle at this point, when displaced towards right side, it experiences a
force towards left and vice-versa. Therefore at stable equilibrium points

. . N
aF <0 i.e. aF _ Negative Vi
dx dx
Fo_dv
dx
dav : . "
d—z = Negative x Negative = Positive
X
2 N
ie. d—\z{ >0 > X
dx

This is the condition of minima. Here point is the stable equilibrium points. Thus a stable equilibrium point is a
minimum of V(x) versus 'x' plot. Therefore points B and D are stable equilibrium points.

Unstable Equilibrium Points:

A point is unstable equilibrium point if a particle at this point, when displaced towards right side, it experiences
a force also in rightward direction. That is the force tries to displace the particle away from the equilibrium point.
Therefore at unstable equilibrium points

aF >0 i.e. aF _ Positive
dx dx
Fo_ v
dx
dav . : :
d—z = Positive x Negative = Negative
X
2
ie d_\2/ <0
dx

This is the condition of maxima. Here point is the unstable equilibrium points. Thus an unstable equilibrium points in
V(x) versus 'x' plot graph are maxima points. Therefore points A and C are unstable equilibrium points.

Q: If V(x) = ax*, & > 0then find equilibrium point and check it is stable or unstable.
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Solution: Let x, is equilibrium point. For equilibrium point

dv
S = V()

dx [,y

dx*
=>a—
dx

=0

X=Xg

:>4axg:0

=X, =0

So x, =0 is equilibrium point. 0
Now 2 2 x, =0
], =38
X=X,
Further higher even derivative
d*V (x)
dx?

=0 (Stable equilibrium point)

=24>0

X=Xo=0

So x, =0 is stable equilibrium point.

Q: If V(x) = ax®, a > 0 then find equilibrium point and check it is stable or unstable.

Theory of small oscillations:
Let us consider a conservative system havingn degrees of freedom, described by a set of ngeneralised co-
ordinates q,, q,, d,------+--0, . The system has a stable equilibrium corresponding to the minimum of potential energyV, .

Let us assume that the generalised co-ordinates are measured with respect to this stable equilibrium position.
Expanding the potentiaIV(ql, as, q3,----~~-qn)of the system about the equilibrium point in a Taylor series, we have

V(ql, Oy, Ogyeeeeeeee qn):VO+Z[2—;/_\J q; + ZZ(@q aq ] of qJ Forrrs (1)
i /0

The first term is the potential energy at the equilibrium position which is a constant and may be taken as zero. The
second term vanishes, since at the equilibrium position, the generalised force (av 164, )O =0. Neglecting higher terms, we

have

1 A .

R

V:%zzviqu “““ (2)
i

oV
Where, Vi =(aq_an
i iJo

If the transformation equations defining the generalised co-ordinates do not depend explicitly on time, the
kinetic energy is a quadratic function of the generalised velocities. That is

1 L] L]
T=Ezzmij a; 3
i
Where the m; ’s are in general functions of the generalised co-ordinates and contain the masses. Expanding m;;

into a Taylor series about the equilibrium values of g; ’s and neglecting terms beyond the constant values of m;; at the

ij
equilibrium position

my =(mg) (4)
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Designating the constant values of (m;; ) by the constant G;;’s, we have

1 L] L]
TZEZZGU Qta ®)
i
Now, the Lagrangian of the system is

L=T-V :%ZZGU ai(.lj _%szij Qid;
i i

:>L:%ZZ{GU Eliaj'_vij Qqu'J """ (6)
i

o 1 ° oL 1

0q; j Ok 25
Therefore, Lagrangian equation
t 6q| qi

d|1 * 1
1 E G 0.+t E =0

3Z[Gij .q.j+Vijq1j=0, “““ (7)
i

Equation (7) is a system of nsecond order homogeneous differential equation with constant coefficient.
Let the solution of this differential equation be

g,=Caje’™ (8)

q;=Ca; (i}

And q;=Ca; (Ciof-iwk " =-w’Caje™" (9)
Now, substituting the values of equation (8) and (9) in equation (7), we have

Z(Gij a;+Vy qjjzo

J
=3 [6; Fo*Cajet)rvcaeit|=0

i
:Z(\/ij - 0’Gj k: a;e’ =0
i

2 Wy -0’6y Ja; =0 2 Ce ™ 20 - (10)
i
Expanding the equation
(Vll _C‘)ZGll)al+ 12 _0)2612 )az +WVi3 _0)2613)33 RIRRRRRRRRE o \ 4T _COZGm )an =0
(\/21 _a)ZGZI)al +6/22 _0)2622 )az Jr(\/23 _a’2623)33 +""""""+(V2n —a)262n )an =0
(\/31 —szsl)al"‘ 32 —©°Gay )az + Va3 —502633)33+"“""""+(V3n -Gy, )an =0 ---(11)

(an _a)anl )al+(vn2 _sznZ )az +6/n3 _sznS )as +""'"'"”+(Vnn _a)ann )an =0
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This set of nlinear homogeneous equations for the a’s will have a solution only if the determinant of the
coefficients is zero. i.e.

(\/1l _szll )(\/12 —szlz) ............ (\/1n _wz(_:,ln )
(\/21 —w2621)(\/22 —a’szz) ............ 6/2n _wZGZH )
(V31 - %Gy, )(\/32 —szsz) """""" (VSn -Gy ) =0 (12)

This equation is of n"degree in w?and the roots give the frequencies for which equation (8) represents a
correct solution of equation (7). That is, the equations of motion will satisfied by an oscillatory solution of the type
given in equation (8), not merely for one frequency but in general for a set of nfrequencies w,. These frequencies are

often called the frequencies of free vibration or the resonant frequencies of the system.
Therefore, complete solution of the equation of motion with all allowed frequencies is

dj=>.Cp aj, S — (13)
p

Each of the co-ordinates is dependent on all the frequencies and to determine the amplitudes (aj)’s, each

value of w, is substituted separately in equation (11).

Normal Modes:

Normal modes of coupled oscillator:
Let us consider a couple oscillators consist by two identical particles of masses “m” attached by three springs
between two rigid supports. Let the spring constant of the two outer spring be k and the inner spring bek” . Let the
particles P; and P, gets displace due action of external force through a distance x; and x, .The system has degree of
freedom 2 (since system has two masses and one direction fixed) and the generalised coordinate’s q; iS X; and g, iSX,.
Now, kinetic energy of the system
T=ImaZ+imxl
2 2
And potential energy of the system
1 2 1 > 1 2
V==kx " +=K (X% ) +=k(-x
2 1 2 ( 1 2) 2 ( 2)

Now, Lagrangian of the system is

oL oL
— =mx¥; and — =—-kx; —k'(x; — x
%, 1 ox, 1~k —xz)

Therefore, Lagrangian equation of motion
dfa) a
dtlox, | ox

= %(mxl)_{_ oy —K'(%, =%z )} =0
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Again, w.r.to X, ,

In general, the potential energy for three particle system is

1 1 1 1
\% =Ek1 X12 +Ek2 ()(1—)(2)2 +Ek3 (Xz —X3)2 +§k4 (—X32)
OR

1 1 1 1
\Y =Ek1 X12 +Ek2 (Xz _Xl)z +Ek3 (x3—x2)2 +§k4 (—X32)

- Er <3 ey
{-mm— —YY—
T

From equation (1) and (2), we see that the solutions x;(t) and X, (t) of these equations is not necessarily SHM

oL
— =mxX, and — =k'(X; — X, )—kx
%, 2 o, (1 2) 2

Therefore, Lagrangian equation of motion
dfoL) o _4
dt\ ox, | 0OX,

= 2 m%,)— %)y} =0

i.e. they are not executing SHM separately (individual masses are not executing SHM). To obtain the solution for the
coupled oscillator, the above two ODE’s need to be solved simultaneously.
Adding equation (1) and (2), we get
= My + kg + (% — X )+ M, +kxy —k'(X; —X,)=0
= m(%, + %, )+ k(% +x,)=0
:>(5<1+X'2)+%(x1+x2):0 ----- (3)
Subtracting (2) from (1), we get
= My + kg + (% — X )= M, —kx, +k'(X, —%,)=0
= m(¥%; — %, )+ k(X — X, )+2K'(x, —x,)=0
=m(% — %)+ (k+2k") (x, —x,)=0

.o k2K
= (% =%, )+ (-x)=0 (4)
Equation (3) corresponding to SHM of normal co-ordinates (xl + xz)with normal angular frequency
k
a)s = H

Similarly, equation (4) is also corresponding SHM of normal co-ordinates (x1 - x2) with normal angular frequency

k+2k’
a)f = m

Thus X, (t) and x,(t) are not necessarily executing any SHM but the linear combination of co-ordinates of the masses
X, (f) + X, (1) and X, (t) — X, (t) are executing SHM.
Now, solution of equation (3) is

X () + % (t) = ACos(est + ) == (5)
Where, A and ¢, are the constants for amplitude and phase, which depends on initial conditions.
Similarly, solution of equation (4) is

X1 (£) = X, (t) = A Cos{w t + g ) -~ (6)

Where, A;and ¢; are the constants for amplitude and phase, which depends on initial conditions.
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Adding (5) and (6), we get

X1 (£) + % () + X (t) — X, (£) = ACos(wyt + g )+ A; Cos(wy t + ¢y )

=X (t) = %Cos(wst )+ A—ZfCOS(a)ft + ;) —(7)

Subtracting (6) from (5), we get

X, (1) + %o (£) = X, (£) + X, (t) = ACos(qt + ¢ )— A Coslw;t + by )

= X, (t) = %Cos(a)st +¢S)—A—£Cos(wft +y) —-(8)

Equations (7) and (8) are the general solutions or nature motions of 1% mass and 2™ mass respectively which are the
linear combination of sine waves of frequencies o, and oy

Let choose some initial conditions such that A =0and A; =0.
When A; =0

X (t) = % Cos(wgt +¢)

And (0 = 2 Cos(at+ )

X () =X, (t)
i.e. Both x;(t) and x,(t) are executing SHM with same frequency o, and same amplitude in phase as shown in figure.
This is called 1% normal mode.

& —
When A, =0 ’
A, oy
X (t) = 7Cos(a)ft + @; )
And xg(t)z—A—ZfCos(a)ft+¢f) Sk
X0 =—%,() Fo ”ﬁ '{# g i

i.e. Both x,(t) and x,(t)are executing SHM with same frequency @; and opposite amplitude, 180° out of phase as

shown in figure. This is called 2™ normal mode.
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9.1.INTRODUCTION

In this chapter, we generalize the harmonic oscillator problem of one degree of freedom in the Lagrangian

formulation to the case of the small amplitude oscillations of a system of severt.ll degrees c_’f freedom near the
position of equilibrium. The theory of such small oscillations is extremely important in sever.al areas of
physics, e.g., molecular spectra, acoustics, vibrations of atoms in solids, coupled mechanical osc'xllatllors and
electrical circuits etc. When we go from a single oscillator to the problem of two coup!ed oscﬂlators. the
analysis results in some interesting and surprising new features. We shall see that the motlonlof two coupled
oscillators in generai is much complicated and none of the oscillators in general executes simple ha_rrponic
motion. However. for small amplitude oscillations, we may express the general motion as a superposition of
two independent simpie harmonic motions, both going on simultaneously. We call these two simple harmonic
motions as normal modes or simply modes. Further we shall see that a system of N coupled oscillators with
N degrees of freedom, has exactly N independent modes of vibrations and the general motion can be expressed
as the superposition of N normal modes. Each mode has its own frequency and wavelength. We will establish
arelation between the wavelength and frequency of a mode, known as the dispersion relation. Now, considering
exceedingly large number of particles and allowing the interparticle distance to approach zero, we obtain the
system as continuous medium and its motion is dealt as waves.

9.2. POTENTIAL ENERGY AND EQUILIBRIUM — ONE DIMENSIONAL OSCILLATOR

In order to understand the general theory of oscillations, it is essential to know about the potential energy
at the equilibrium configuration. Let us consider a conservative system in which the potential energy is a

function of position only. Let the system be specified by n generalized coordinates dy> Gpsees 4 MO involving
. i . n
time explicitly. For such a system, the potential energy is given by

V= V.(q], 0y, ) (1)
and the generalized forces are given by '

G, = _..ai where k=1,2,..... n (2)
y oqy
. The system is said to be in equilibrium, if the generalized forces acting on the system are equal to zero,
Le.. '
oV
G, =—|—1| =0
A [aqk :|0 -+

Thus the potential energy has an extremum at the equilibrium conﬁguratibn of the system, represented bY
1 2 00 0 N\Tmaes o o cxey .
the coordinat=s qiqr.... q,, - Now_ if the system is in equilibrium with zero initial velocities ¢. . the svstem
will remain in equilibrium indefinitely. Examples of mechanical systems at equilibrium are a pendulum and a

qpring-mass system at rpst, an egg standing on one end etc.
b | 2
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9.2.1. Stable, Unstable and Neutral Equilibrium

A system is said to be in stable equilibrium, if a small displacement of the system from the rest position

(by giving 2 little energy to it) results in a small bounded motion about the equilibrium position. In case, small

displacement of the system from the equilibrium position results in an unbounded motion, it is in an unstable

equilibrium. Further, if the system on displacement has no tendency to move about or away the equilibrium

sition, it is said to be in neutral equilibrium. An example of stable equilibrium is a pendulum in the rest

position and that of an unstable equilibrium is an egg standing on one end. A coin placed flat anywhere on a
table is in neutral equilibrium. ‘

T\ -

0 A
) % q,—> 9y 4q, 2
(a) Stable equilibrium (b) Unstable equilibrium

Fig. 9.1 : Potential energy curve

A graph drawn between the potential energy of the system and a particular coordinate g, is called potential
energy curve and is shown in Fig. 9.1. The positions 4 and B, where the generalized force F* = — dVidg
vanishes, are the positions of equilibrium; potential energy V is minimum (say V) at 4
[Fig 9.1(a)] and maximum at B [Fig. 9.1(b)]. Position 4 corresponds to the stable equilibrium, because if the
system is displaced from 4 to Q by giving energy (E - V) and left to itself, the system tries to come in the
position of minimum potential energy. Consequently the potential energy will change to kinetic energy and at 4
the energy (£ — V) will be purely in the kinetic form because of the conservation law. This will change again
to potential form, when the system moves towards the position Pand hence a bounded motion ensues about the
equilibrium position 4. Obviously the position B of the maximum potential energy represents the unstable
equilibrium because any energy given to the system at this position will result more and more kinetic energy
when the system moves either left or right to it. In this case, the system moves away from the eq\lilibn'um
position. In case of neutral equilibrium, the potential energy is independent of the coordinate and equilibrium-
occurs at any arbitrary value of that coordinate.



