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Small Amplitude Oscillations  

In this category, we will discuss about the mechanics of the particles having small amplitude of oscillations. In 

case of mutually interacting particles, the motion of one particle in influenced by other particles and so the entire system 

develops a different mode of motion i.e. called „normal mode of motion‟. 

 

Stability Analysis: 

By stability analysis we mean, finding equilibrium position and investigating whether the given equilibrium is 

stable or unstable. 

Equilibrium criteria in one dimension:  

If V  be the potential energy then the relation between force and potential energy is  

  
dx

dV
F     

If the system in equilibrium then net force on the system is zero. So   

   0xF  

   0.. 
dx

dV
ei x  

This is the condition of equilibrium. It gives the equilibrium points or positions. Let the variation of potential 

with distance x is shown in figure-1. In )(xV versus '' x  graph the points where 0
dx

dV
 i.e. at the point where tangent to 

the curve is parallel to x-axis are the equilibrium points. Therefore in figure, points A, B, C and D are equilibrium 

points.  

Stable Equilibrium Points: 

 A point is stable equilibrium point if a particle at this point, when displaced towards right side, it experiences a 

force towards left and vice-versa. Therefore at stable equilibrium points 

  0
dx

dF
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dx

dF
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dV
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
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This is the condition of minima. Here point is the stable equilibrium points. Thus a stable equilibrium point is a 

minimum of )(xV  versus '' x  plot. Therefore points B and D are stable equilibrium points.  

 

Unstable Equilibrium Points: 

 A point is unstable equilibrium point if a particle at this point, when displaced towards right side, it experiences 

a force also in rightward direction. That is the force tries to displace the particle away from the equilibrium point. 

Therefore at unstable equilibrium points  

  0
dx

dF
 i.e. Positive

dx

dF
  

  
dx

dV
F   

  NegativeNegativePositive
dx

Vd


2

2

 

  0..
2

2


dx

Vd
ei  

This is the condition of maxima. Here point is the unstable equilibrium points. Thus an unstable equilibrium points in 

)(xV  versus '' x  plot graph are maxima points. Therefore points A and C are unstable equilibrium points.  

 

Q: If 0,)( 4   xxV then find equilibrium point and check it is stable or unstable. 
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Solution: Let 0x is equilibrium point. For equilibrium point 

  0
)(

0


 xxdx

xdV
 

  0

0
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

 xx
dx

dx
  

  04 3
0  x  

  00  x  

So 00 x  is equilibrium point. 

Now  
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 Further higher even derivative 

  024
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0
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So 00 x  is stable equilibrium point. 

 

Q: If 0,)( 3   xxV then find equilibrium point and check it is stable or unstable. 

 

 

Theory of small oscillations: 

 Let us consider a conservative system having n degrees of freedom, described by a set of n generalised co-

ordinates nqqqq ,,, 321 . The system has a stable equilibrium corresponding to the minimum of potential energy 0V . 

Let us assume that the generalised co-ordinates are measured with respect to this stable equilibrium position. 
Expanding the potential  nqqqqV ,,, 321 of the system about the equilibrium point in a Taylor series, we have  
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The first term is the potential energy at the equilibrium position which is a constant and may be taken as zero. The 

second term vanishes, since at the equilibrium position, the generalised force   0/
0
 jqV . Neglecting higher terms, we 

have  
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Where,   
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If the transformation equations defining the generalised co-ordinates do not depend explicitly on time, the 

kinetic energy is a quadratic function of the generalised velocities. That is  

  




i j

jiij qqmT
2

1
     ----- (3) 

Where the ijm ‟s are in general functions of the generalised co-ordinates and contain the masses. Expanding ijm  

into a Taylor series about the equilibrium values of iq ‟s and neglecting terms beyond the constant values of ijm  at the 

equilibrium position 

   
0ijij mm        ----- (4) 
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Designating the constant values of  
0ijm by the constant ijG ’s, we have 

  




i j

jiij qqGT
2

1
     ------ (5) 

Now, the Lagrangian of the system is  
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Therefore, Lagrangian equation  
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Equation (7) is a system of n second order homogeneous differential equation with constant coefficient. 
Let the solution of this differential equation be  

  ti
jj eaCq        ----- (8) 

    ti
jj eiaCq  



  

 And    ti
j

ti
jj eaCeiiaCq   



 2   ------ (9) 

Now, substituting the values of equation (8) and (9) in equation (7), we have 
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j

ti
jij

ti
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j

ti
jijij eaCGV     

    02  
j

jijij aGV    0 tieC    ---- (10) 

Expanding the equation 
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This set of n linear homogeneous equations for the a ’s will have a solution only if the determinant of the 
coefficients is zero. i.e. 
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   ----- (12) 

This equation is of thn degree in 2 and the roots give the frequencies for which equation (8) represents a 
correct solution of equation (7). That is, the equations of motion will satisfied by an oscillatory solution of the type 
given in equation (8), not merely for one frequency but in general for a set of n frequencies p . These frequencies are 

often called the frequencies of free vibration or the resonant frequencies of the system.  
Therefore, complete solution of the equation of motion with all allowed frequencies is   

 




p

ti

jppj
peaCq


       ------ (13) 

Each of the co-ordinates is dependent on all the frequencies and to determine the amplitudes  ja ’s, each 

value of p  is substituted separately in equation (11). 

 

Normal Modes: 

 

 

 

 

Normal modes of coupled oscillator: 

Let us consider a couple oscillators consist by two identical particles of masses “m” attached by three springs 

between two rigid supports. Let the spring constant of the two outer spring be k and the inner spring be k   . Let the 

particles P1 and P2 gets displace due action of external force through a distance 1x  and 2x .The system has degree of 

freedom 2 (since system has two masses and one direction fixed) and the generalised coordinate‟s 1q  is 1x  and 2q  is 2x . 

Now, kinetic energy of the system 
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And potential energy of the system 
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Now, Lagrangian of the system is  
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Therefore, Lagrangian equation of motion 
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    02111  xxkkxxm   --- (1) 

Again, w.r.to 2x , 
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xm
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L








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2
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Therefore, Lagrangian equation of motion 
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




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       02212  kxxxkxm
dt

d
  

    02122  xxkkxxm   ---- (2) 

From equation (1) and (2), we see that the solutions )(1 tx  and )(2 tx of these equations is not necessarily SHM 

i.e. they are not executing SHM separately (individual masses are not executing SHM). To obtain the solution for the 

coupled oscillator,  the above two ODE’s need to be solved simultaneously.  

Adding equation (1) and (2), we get 

     021222111  xxkkxxmxxkkxxm   

     02121  xxkxxm   

     02121  xx
m

k
xx      ----- (3) 

Subtracting (2) from (1), we get 

     021222111  xxkkxxmxxkkxxm   

       02 212121  xxkxxkxxm   

       02 2121  xxkkxxm   

     0
2

2121 


 xx
m

kk
xx     ----- (4) 

Equation (3) corresponding to SHM of normal co-ordinates  21 xx  with normal angular frequency  

 
m

k
s   

Similarly, equation (4) is also corresponding SHM of normal co-ordinates  21 xx   with normal angular frequency 

 
m

kk
f




2
  

Thus )(1 tx  and )(2 tx  are not necessarily executing any SHM but the linear combination of co-ordinates of the masses 

)()( 21 txtx   and )()( 21 txtx  are executing SHM. 

Now, solution of equation (3) is  

  sss tCosAtxtx   )()( 21    ---- (5) 

Where, sA and s are the constants for amplitude and phase, which depends on initial conditions. 

Similarly, solution of equation (4) is  

  fff tCosAtxtx   )()( 21    ---- (6) 

Where, fA and f are the constants for amplitude and phase, which depends on initial conditions. 

In general, the potential energy for three particle system is  

     2
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2
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2

1
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  OR 
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2
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2
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2
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1
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1
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Adding (5) and (6), we get  

    fffsss tCosAtCosAtxtxtxtx   )()()()( 2121  

    ff

f

ss
s tCos

A
tCos

A
tx  

22
)(1   --- (7) 

Subtracting (6) from (5), we get 

    fffsss tCosAtCosAtxtxtxtx   )()()()( 2121  

    ff

f

ss
s tCos

A
tCos

A
tx  

22
)(2   ---- (8) 

Equations (7) and (8) are the general solutions or nature motions of 1
st
 mass and 2

nd
 mass respectively which are the 

linear combination of sine waves of frequencies s and f   . 

Let choose some initial conditions such that 0fA and 0sA . 

When 0fA  

   ss
s tCos

A
tx  

2
)(1  

And   ss
s tCos

A
tx  

2
)(2  

     )()( 21 txtx   

i.e.  Both )(1 tx  and )(2 tx are executing SHM with same frequency s  and same amplitude in phase as shown in figure. 

This is called 1
st
 normal mode. 

When 0sA  

   ff

f
tCos

A
tx  

2
)(1  

And    ff

f
tCos

A
tx  

2
)(2  

   )()( 21 txtx   

i.e.  Both )(1 tx  and )(2 tx are executing SHM with same frequency f  and opposite amplitude, 0180  out of phase as 

shown in figure. This is called 2
nd

 normal mode. 
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