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Classical Mechanics of Point Particles 

Review of Newtonian Mechanics: 

Conservation of linear Momentum: 

 The linear momentum of a particle of mass „m‟ and velocity „v‟ is define as 
    mvp   

Therefore the net linear momentum for a system of n-particles is 

   




n

i

ii

n

i

i vmpP

11

   

From Newton‟s 2
nd

 and 3
rd

 law we have, 

dt

dp
Fext   

i.e. the rate of change of linear momentum of a system of particle is equal to the net external force acting on the system. 

 If Fext =0 then 0
dt

dp
 and integrating we gate,  P = constant. 

Thus if the net external force acting on a system of particles is zero, the net linear momentum of the system 

remains constant. This is the principle of conservation of linear momentum.  

 

Conservation of Angular Momentum: 

 The moment of linear momentum of a rotating particle is called the angular momentum. The angular momentum 

of a particle of linear momentum (p=mv) and having position vector r relative to and arbitrary origin is defined as 

 prJ      ------------------------- (1) 

For a system of n-particles, we have 

  

i i

iii prJJ     ------------------------- (2) 

Differentiating above equation we get,  
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      0
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dp
r i

i

i      ------------------------ (3) 

Where 
dt

dp
F i

i  = net force acting on i
th
 particle. 

As internal force occurs is equal and opposite pair hence the net internal force acting on the system of particle is zero. 

Thus from equation (3) we have, 

 

i

ext
ext

ii Fr
dt

dJ
    ----------------------- (4) 

Where  

i

ext
iiext Fr  is the torque arising due to external force only. 

 If 0ext  then 0
dt

dJ
 

  or      J = constant. 

Thus in the absence of an external torque the angular momentum of a system remains constant. 
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Motion of a charge particle in external electric field: 

Let a charge particle q is thrown from „o‟ towards the screen with a constant velocity „u‟. In the absence of 

electric field, charge particle directly strikes the screen at „C‟. 

Now, motion along x-axis is 

 2

2

1
tatux xx   

 0 utx   0a  

 
u

x
t   ---- (1) 

Let a uniform electric field „E‟ is applied. In the presence of electric field,  

the charge particle experience a force given by 

 qEF    ---- (2) 

According to Newton law 

 maF    --- (3) 

 From equation (2) and (3), we get 
 qEma   

 
m

qE
a    ---- (4) 

It a constant acceleration of charge particle along y-axis since the electric field is constant. 

Motion along y-axis is 

 2

2

1
tatuy yy   

 
2

2

2
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0

u
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m

qE
y   

 
2

2

2

1

u

x

m

qE
y    --- (5) 

Since, u, q, m, and E constant 

 2kxy   

 2.. xyei   

This is the equation of parabola; hence any charge particle thrown in uniform electric field is always describing 

parabolic path. 

 

Motion of a charge particle in a uniform magnetic field: 

(1). If a charge particle moves in the direction of a magnetic field then no force acts on it, because the velocity vector 


v  

and magnetic field vector 


B  are parallel to each other. 

(2). If a charge particle „q‟ of mass „m‟ moves with initial velocity 


v  in a plane perpendicular to the direction of 


B  then 

the charged particle experiences a force, which is given by  

  qvBBvqF 











 

Since the direction of this force always  

remains perpendicular to the velocity 


v , 

  0.. 










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v
dt
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   2

2

1
mv Constant.   ------- (1) 

This equation shows that the magnetic field does not work and does not changes the K.E. of the particle i.e. the force 


F  cannot change the magnitude of velocity 


v , but it changes only the direction of motion and hence the charge 

particles will moves in a circular path of radius „R‟ in the magnetic field with constant speed as shown in figure. The 

force provides the necessary centripetal force. 

  qvB
R

mv


2

 

  
qB

mv
R      ---- (2) 

This is known as Gyro-radius. The radius with which a charge particle is travelling in circular orbit in magnetic field is 

called Gyro-radius. 

 Angular velocity, 
m

qB

R

v
    ------ (3)  Rv   

This is known as Gyro-frequency. 

 Frequency, 
m

qB
f





22
    ------ (4) 

And Time period,  
qB

m

f
T

21
    ------ (5)  

(3). If a charge particle „q‟ of mass „m‟ moves with initial velocity 


v , making an angle „θ‟ with the direction of uniform 

magnetic field  


B  as shown in figure, then the velocity 


v  can be resolved into two components: 

 (a). The horizontal component 


Bv  along the direction of the magnetic field is given by 

  cosvv 


B  

(b). The perpendicular component 


Nv  along the normal to the direction of magnetic field is given by 

 sinvvN 


 

 

 

 

 

 

 

 

 

 

 

Now, due to the normal component, the particle moves along a circular path of radius „R‟ and the necessary 

centripetal force is provides by this component. 

 Bvq
R

mv
N

N 
2

 

 
qB

vm

qB

vm
R N sin

    ----- (6) 

 Angular velocity, 
R

v

R

vN 


sin
     Rv   

   
m

qB

mv

qB
v 




sin
sin   ------ (7) 
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 Frequency, 
m

qB
f





22
     ------ (8) 

And Time period,  
qB

m

f
T

21
     ------ (9) 

 For the component velocity cosvv 


B , there will be no force on the charge particle in the magnetic field, 

because the angle between 


Bv and 


B  is zero. Thus the particle covers the linear distance in the direction of the magnetic 

field with constant speed cosv . 

 Therefore, under the combined effect of the two component velocities, the charged particle in the magnetic field 

will cover linear path as well as circular path i.e. the path of the charge particle will be Helical, whose axis is parallel to 

the direction of magnetic field as shown in figure. 

 The linear distance covered by the charged particle in the magnetic field in time equal to one revolution of its 

circular path is known as pitch of helix and it is  

 
qB

m
vTvd B




2
cos   

 

Motion of a charge particle in combined electric and magnetic field: (Velocity Selector) 
Let us consider that a charged particle q is moving with a velocity v in combine electric and magnetic fields of 

intensities 


E and 


B  respectively as shown in figure. Let the electric field 


E  is along downward direction and the 

magnetic field 


B  is perpendicular to the plan of the paper, directed inwards.  

Now due to the electric field, the force on moving charge particle is 

  


 EqFE  

Again due to the magnetic field, the force on moving charge particle is 

  











BvqFB  

  qvBqvBFB 


090sin  

If the magnitude of electric field is greater than magnetic field then the charge particle tends to moves in 

downwards directions. Again, if the magnitude of magnetic field is greater than electric field then the charge particle 

tends to moves in the upwards directions. If the magnitude of electric and magnetic fields are equal then the charge 

particle is undeflected.i.e. Straight line.  

Therefore, when  

  BE FF   

  qvBqE   

  
B

E
v   

This system of combined fields is known as a velocity selector or a velocity filter, because it is used for selecting a beam 

of electrons or ions having constant velocity 
B

E
v  and filtering out others by suitably adjusting the value of either 

field. 
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Motion of a charge particle in crossed electric and magnetic field: 

Let us consider that a charged particle q of mass m, emitted at the origin with zero initial velocity into a region 

of uniform electric and magnetic fields. The electric field


E  is acting along z-axis and magnetic field 


B is along x-axis. 

The force


Eq  due to electric field will act along z-axis and hence it moves with a velocity


v along z-axis. As the 

charged particle is placed in a magnetic field


B , it will experience a force, )(


 Bvq acting in the direction perpendicular 

to both


v and 


B . Hence the particle will bent. The resultant force known as Lorents force is thus given by  

  


















BvEqF

 

Since,       zyByzByBzzByx

B

zy

zyx

Bv ˆ0ˆ000ˆ

00

0

ˆˆˆ







 


 

Therefore,     zyByzBzEqBvEqF ˆˆ 


 


















    ----- (1) 

According to Newtons 2nd law,  

   zzyymamF ˆˆ  


   ---- (2)
  

Now, equating equation (1) and (2), we have  

    zzyymzyByzBzEq ˆˆˆˆ 


 

 Now, equating the coefficient of ŷ and ẑ , we have 

 ymzqB   z
m

qB
y   zy   zy     ---- (3) 

Where,  
m

qB
 is called cyclotron frequency. 

and   zmyBEq    









 y

B

E

m

qB
z 

 

zmy
B

E
qB  










 









 y

B

E

m

qB
z 

 









 y

B

E
z     ---- (4) 

Differentiating equation (4), we get 

  yz   0  

zz      zy    

zz  2    ---- (5) 

This is the differential equation of S.H.M. Its solution is  

    tvz z sinmax   ----- (6) 

At, 0t , 0z and 0 .  

Therefore, tvz z sinmax   ------ (7) 
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Now to find max

zv  , differentiating equation (7), we get 

tvz z cosmax  ----- (8) 

From equation (4) and (8), we have   









 y

B

E
tvz

 cosmax      









 y

B

E
tvz

cosmax   ------- (9) 

At, 0t , 0y and
B

E
vz max

   

 

Now, substituting the values of max

zv in equation (9), we have  









 y

B

E
t

B

E
cos    

 t
B

E
y cos1   ---- (10) 

This is the equation for y .  Now equation for z , substituting the values of max

zv in equation (7), we have  

  t
B

E
z sin    ---- (11)  

To get trajectory of the motion of the charge particle, integrating equation (10) and (11), we get 

    

t

dtt
B

E
y

0

cos1   

  











t
t

B

E
y

sin
 

 tt
B

E
y 


sin    ----- (12) 

And  
t

dtt
B

E
z

0

sin   

t
t

B

E
z

00

0 cos













  

 t
B

E
z 


cos1    --- (13) 

Let, 
B

E
R  , from equations (12) and (13), we have 

 ttRy  sin  and  tRz cos1  

tt
R

y
 sin  and t

R

z
cos1   

t
R

tRy



sin


  and t

R

Rz
cos


 

Squaring and adding these equations we have 

 
   

1
2

2

2

2







R

RZ

R

tRy 
 

    222
RRZtRy     --- (14)  
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This is the trajectory for a cycloid motion, which is defined as the path generated by the point on the circumference of 

a circle, rolling along a circle as shown in figure. In the present case the radius of the rolling circle is
B

E
R   , the 

maximum displacement along z-direction is
B

E2
 .The z-displacement becomes zero at







 4
,

2
,0t . The y-

displacement in time


2
t  is





B

E2
. 

Coordinates:  

 A set of values that show an exact position of a particle or a system is called coordinates. Examples of 

coordinate are shown in figure below. 

 

 

 

 

 

 

 

 

Constraints:  

The limitation or geometrical restrictions on the motion of a particle or system of particles are generally known 

as constraints. 

Example: 

 (1) The motion of point mass of a simple pendulum is restricted, since the point mass always remains at a 

constant distance from the point of suspension. 

 (2) The motion of a rigid body is always such that the distance between any two particles remains unchanged. 

 

Classification of constraints: 

The constraints may be classified as: 

1. (a) Scleronomic: When the constraint are independent of time (i.e. if the constraint relation does not explicitly 

depend on time) then they are called scleronomic constraint. 

Example: In case of rigid body. 

(b) Rheonomic: When the constraint relations are explicitly depends on time then they are called Rheonomic constraints. 

Example:  When a particle (Bead) is made to slide on a moving wire. 

2(a). Holonomic: A holonomic constraint is one that may be expressed in the form of an equation relating the co-

ordinate of the system and time. (i.e. Constraint relation are or can be made independent of velocity.) 

 The general form of such equations for a system of N-particles is  

  F(r1, r2, r3,………………………………….rN, t) =0 

 Where r1, r2, r3, ………………………………….rN,  be the the position co-ordinates of a system and “t” denotes 

the time. 

Example:  

 (1) The constraints involved in the motion of rigid bodies in which the distance between any two particular 

points is always fixed are holonomic. 

 (2) The constraints involved when a particle is restricted to move along a curved or surface are holonomic. 

 (3) The constraint involved in the motion of the point mass of a simple pendulum are holonomic. 

(b) Non-Holonomic: If the constraints cannot be expressed in the form of F(r1, r2, r3, 

………………………………….rN, t) =0, then they are called non-holonomic constraints. 
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Example:  (i) The constraints involved in the motion of the particle placed on the surface of a solid sphere are non-

holonomic. The condition of constraints in this case are expressed as  

r
2
-a

2 
≥ 0 

Where “a” is the radius of sphere. This is an inequality and hence not in form of F(r1, r2, r3, 

………………………………….rN, t) =0. 

(ii) The constraints involved in the motion of the molecules in a gas container are non-holonomic. 

(iii) An object rolling on a rough surface without slipping involves non-holonomic constraint in the description of its 

motion. 

 

Degree of freedom: 

 The minimum number of independent co-ordinates (variables) required to specify the position and all the 

possible configuration of a dynamical system which are compatible with the given constraints is called the number of 

degree of freedom. 

Example:  

(i) When a single particle moves in space, it has three degree of freedom but if it is constraint to move 

along a certain space curve, it has only one. 

(ii) When a system of two particles, moving freely in space, requires two sets of three coordinates 

    222111 ,,,,.. zyxandzyxge   i.e. six coordinates to specify its position. Thus the system has six 

degrees of freedom. 

(iii) For system of N-particles moving independently of each other, the number of degree of freedom is 3N. 

(iv) An N particle with ''n  constraint relations has nN 3 independent variables. Thus the number of degree 

of freedom is nNf  3 .  

 

Generalised Co-ordinates: 

 The minimum number of independent coordinates or variables which is required to describe the motion of a 

dynamical system is known as Generalised Coordinates. 

A system of N particles free from constraints has 3N independent co-ordinates which can easily be described by 

Cartesian co-ordinates but in case of holonomic constraint ''n  the number of degree of freedom will be nNf  3   

which is less than the total number of Cartesian co-ordinates involved. Hence in the presence of constraint, Cartesian co-

ordinates fail to completely describe the configuration of the system. Therefore a different co-ordinate system was 

introduced which can be particularizes according the constraint relations known as Generalised co-ordinates. 

 The Cartesian coordinates can be expressed in terms of Generalised coordinates.  If x1, x2, x3, ………………..xn 

be the Cartesian co-ordinates of a system of particle, then these Cartesian co-ordinates can be expressed as functions of 

Generalised co-ordinate q1, q2, q3,……………………..qn.    i.e., 

  

),.,.........,,,(

),.,.........,,,(

),.,.........,,,(

4321

432122

43211

tqqqqqxx

tqqqqqxx

tqqqqqxx

nnn

n

ni








 

Where “t” denotes the time. These equations are called Transformation equation. 

 In general, if ir , ,.......)3,2,1( i be the Cartesian coordinates and nq be the Generalised coordinates then 

  ),.,.........,,,( 4321 tqqqqqrr nii   

Generalised Displacement: 

 Let us consider an N-particle system for which a small displacement 


 ir is defined by change in position 

coordinates ).,.........3,2,1(, Niri 


 with time )(t  kept as constant. The position vector 


ir  of the i
th
 particle in the form of 

generalized coordinates can be written as 
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Euler’s theorems: If )(rf be a function depends on 3-

variables x, y, z then )(rf  can be written as  

),,()( zyxfrf   

Now complete derivative of  )(rf  

dz
z

f
dy

y

f
dx

x

f
df














  

This equation can also be written as (small change in )(rf ) 

z
z

f
y

y

f
x

x

f
f 














  

 

  ),.,.........,,,( 4321 tqqqqqrr fii



 , where nNf  3  

Using Euler‟s theorems 

 t
t

r
q

q

r
q

q

r
q

q

r
q

q

r
r i

f
f

iiii
i 





























3
3

2
2

1
1

 

 










f

k

k
k

i
i q

q

r
r

1

   (Since 0t ) 

Where, kq represents generalised displacement. 

 

Generalised Velocity:  

Let us consider an N-particle system. The generalised velocity 


kq  is the time derivative of the generalised 

coordinates kq . The position vector ).,.........3,2,1(, Niri 


of the particle in the form of generalised coordinates and time )(t  

can be written as  

 ),.,.........,,,( 4321 tqqqqqrr fii



  

Using Euler‟s theorems 
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 Dividing both side by dt , we have  
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



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Where, 


kq is called generalised velocity. 

(Generalised velocity associated with a particular Generalised co-ordinate kq  may be described in terms of its time 

derivative 


kq .) 

 

Virtual displacement: A virtual displacement of a system refers to a change in the configuration of the system as the 

result of any infinitesimal change of the coordinates ir  consistent with the forces and constraints imposed on the 

system at the given instant„t‟. The displacement is called virtual to distinguish it from an actual displacement of the 

system occurring in a time interval „dt‟, during which the constraints and forces may be changing. In other words, any 

imaginary displacement which is consistent with the constraint relations at a given instant (i.e. without allowing the real 

time to change) is called a virtual displacement. So by definition, a virtual infinitesimal displacement is given by  

  
0


dtii drr  

Virtual work: Suppose a particle is subjected to a force F. If the force produces a virtual displacement r , then the work 

performed by the force is termed as virtual work. The following equation defines the virtual work 
   rFW  .  

The force F is the sum of the constraint force „f‟ (say) and the applied force F
a
. 
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D’Alemberts Principle: 

 This principles states that a system of moving particles can be considered to be in equilibrium under the action 

of the external force plus an additional force 
.

P (- rate of change of momentum) which is known as the reversed 

effective force or inertia force. 

 Let us consider any number of force be applied to the i
th

 particle of the system. If the system is in equilibrium, 

then the total force acting on it is zero. i.e., 

   0
i

ii rF       --------------- (1) 

Where ir  is the virtual displacement and iF  is the equilibrium force acting on each particle of the system . The force iF  

can be written as the sum of the external force i.e., applied force plus constraint force i.e., 

   i
a

ii fFF        --------------- (2) 

 From equation (1), we have 

   0).( 
i

ii
a

i rfF  

         0  i

i i

ii
a

i rfrF  

If the constraint force is normal to the motion i.e., ii rf   then 0
i

ii rf  

   0
i

i
a

i rF      --------------- (3) 

Thus for an equilibrium of a system, the virtual work of the applied forces vanishes. This is known as the principle of 

virtual work. This principle was developed by D‟Alemberts by taking 

   0
..

 iiii PFPF  

Which states that the particle in the system will be in equilibrium under a force equal to the actual force plus a reverse 

effective force
.

P . Thus from equation (1), we have 

   0).(
.

 ii

i

i rPF  

    










i
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a

i rPfF 0.)(
.

 

     










i

i

i

iii
a

i rfrPF 0).(
.

 

    










i

ii
a

i rPF 00).(
.

  

 










i

ii
a

i rPF 0).(
.

     ---------------- (4) 

Which is the D‟Alemberts principle . 

 

 

Lagrangian equation of motion from D’Alemberts Principles: 

 This is the equation of motion in the form of generalised coordinates. The transformation from old coordinate ir  

to new generalised coordinate iq  starts from transformation equations 

  ),,( ,3,21 tqqqqrr nii   

The virtual displacement is 

 n
n

iiii
i q

q

r
q

q

r
q

q

r
q

q

r
r 


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
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
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 






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n

j

j
j

i
i q

q

r
r

1

      ------------------- (1) 
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i














.

      -------------------- (2) 

Using the Einstein‟s summation conventions, the first term of the equation (2) can be written as 

  













j

i

j

i

q

r

q

r
      -------------------- (3) 

Also,  
j
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i
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r
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dr
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r
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d
















)(      -------------------- (4) 

Now according to the D‟Alemberts Principles, 

 










i
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a

i rPF 0).(
.

 

0 


i
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i

i
a

i rPrF     ------------------------------ (5) 

The first term of equation (5) can be written as  

 




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i
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a

i q
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FrF  

     j

j

j qQ       ------------------------------ (6) 

Where 





ij j

ia
ij

q

r
FQ  is the generalized force. 

Also the second term of equation (5) can be written as  
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The co-efficient of jq  can be expressed as  
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From equation (7), we have 
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Where 
.
2

2

1
ii rmT  is the total energy of the system. 

Substituting equation (6) & (8) in equation (5). We get 
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 Equation (9) is known as the Lagrangian equation of motion second kind for non-conservative system. 

 

Case. (i) For a Conservative system: ( If Qj = Qj(q1, q2, ……..qn, t)) 

 For a conservative system the force can be written as the gradient of some scalar function, 

 i.e.,    

VgradF a
i   

VF i
a
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where V is a scalar function. 

 

Since, the generalized force, jQ  is 

jj

i

ij

i
i

j

ia
ij

q

V

q

r

r

V

q

r
V

q

r
FQ























  

Hence Lagrangens equation is  

jj
j

q

V

q

T

q

T

dt

d





























.

 

  0
.

























 VT

q
q

T

dt

d

j
j

    ------------------------ (10) 

Since V is a function of position only and independent of generalised velocity i.e. 0
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Where  ,VTL   ),,(
.

tqqL  is called Lagrangian of the system and the equation (11) is called Eular Lagrangian equation 

of motion. 

Case: (ii):- If 
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When the jQ ‟s are derivative from a potential energy U, then 
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






 tqqqqUU nn

.

,

.

1,,1  is called generalized potential or velocity-dependent potential energy 

function, Then from Lagrangens equation for non-conservative system, we have  from equation (9) 
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
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
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
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





















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
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       ----------------------- (12) 

 

Where L = T- U is called the Lagrangian of the system. 

 

 

Simple Pendulum:  

Let “θ” be the angular displacement of the simple pendulum from the equilibrium position. If “l” be the effective 

length of the pendulum and “m” be the mass of the bob, then the displacement along arc  OA = S is given by 

lS     









l

S

Radius

Arc
  

Kinetic energy  
.
222

2

1

2

1
mlmvT    

 










.




l
dt

ld

dt

ld

dt

ds
v           

If the potential of the system, when the bob is at O, is zero,  

then the potential energy, when the bob is at A is given by  

        cos1cos  mglllmgBCOCmgOBmgV  

Hence  VTL   

  cos1
2

1
.
22  mglmlL  

Now    


sinmgl
L





            and  

.
2

.




ml
L





 

Substituting these value in the Lagrange‟s equation ( here there is only one generalized coordinate 1q ) 

0
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O 

l

 

S 

A 
B 

θ 

C We get, 

 0sin
.

2 







 mglml

dt

d
 

0sin
..

2   mglml  

0sin
..

  gl  

0sin
..

 
l

g
 

This represents the equation of motion of a simple pendulum. 

For small amplitude oscillation,  sin ,  

Therefore the equation of motion of a simple pendulum is  

  0
..

 
l

g
 

This represents a simple harmonic motion of period, given by 

  
g

l
T 2  

 

Linear Harmonic Oscillator: 

 A linear harmonic oscillator is a system of particles of mass vibrating under the action of force. In classical 

mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring 

force F  proportional to the displacement '' x . Let us consider a block of mass „m‟ attached with a spring. Let us displace 

the block from its mean position (equilibrium position 0x ) by applying an external force F  . Due to spring force „F‟, 

the block will execute linear harmonic motion. We assume that there is no any dissipation of energy during SHM and 

the spring obeys Hook‟s law. Hence  

 xkF     ----------------------- (1) 

Where k is spring constant. 

Now, Lagrange‟s equation of motion for one dimensional motion, say in “x” direction can be written as  

0
.

























x

L

x

L

dt

d
  ----------------------- (2) 

The kinetic energy of the system is  

           
2

2

1
mvT   

              

2.

2

1
xm  

As we know that the spring force is a conservative force. So it can be written as  

 
dx

dV
VF   

 FdxdV   

Therefore, potential energy, 

  dxFV .     









dx

dV
VF  

  dxkxV .     kxF   

 CkxV  2

2

1
 

Where “C” is a constant of integration, which depends upon the initial conditions and “k” is spring constant. If 

we choose the horizontal plane passing through the position of equilibrium as the reference level, then 0V at 0x  so 

that 0C . Thus Lagrangian is 
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VTL   

2
2.

2

1

2

1
kxxmL   

.

.
xm

x

L





       and  kx

x

L





 

Hence equation (2) takes the form 

    0
.









kxxm

dt

d
 

 0
..

 kxxm  

This is the required expression. It is an equation of simple harmonic motion and can be put in the form 

0
..

 x
m

k
x    

02
..

 xwx  

Where ω is the frequency of oscillation, given by 

  
m

k
  

Therefore, 

 Time period, 


2
T  

  
k

m
T 2  

Atwood Machine: 

 Atwood machine was invented in 1784 by the English Mathematician „George Atwood‟ to verify the 

mechanical laws of motion with constant acceleration. 

 The ideal Atwood machine consists of two objects of mass 1m and 2m  , connected by an inextensible massless 

string over an ideal massless pulley. If 21 mm  then it is in neutral equilibrium i.e. net force is zero. If 21 mm  then the 

acceleration of the object is constant i.e. uniform acceleration.  

 

Equation for constant acceleration: 

 Let us consider a system of two masses 1m and 2m , )( 21 mm  suspended over a frictionless and massless pulley 

of radius ‘r’ and connected by a massless, inextensible, flexible string of constraints. So, the only forces we have to 

consider are: Tension force (T) and weight of the two masses gmw 11  and gmw 22  . 

Force affecting on 1m , 

  amTgm 11    ---- (1) 

Force affecting on 2m ,  

  amgmT 22    ---- (2) 

Adding equation (1) and (2), we get 

  amamgmTTgm 2121   

     ammgmm 2121 
  

  g
mm

mm
a 
















21

21
 ---- (3) 

Equation for Tension: 

 Using equation (1) and (3), we get 
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  amTgm 11   

  amgmT 11   

  g
mm

mm
mgmT 
















21

21
11  

  















21

21
1 1

mm

mm
gmT  

  















21

2121
1

mm

mmmm
gmT  

  g
mm

mm
T 














21

212
 

Lagrangian of Atwood machine: 

 Let us consider a system of two masses 1m and 2m , )( 21 mm  suspended over a frictionless and massless pulley 

connected by a massless, inextensible, flexible string of constraints of length l  . 

Now, velocities of two masses are 

  x
dt

dx
v 1  and x

dt

xld
v 




)(
2  

Therefore, Kinetic energy 

  2
22

2
11

2

1

2

1
vmvmT     

2
2

2
1

2

1

2

1
xmxmT    

  2
21

2

1
xmmT   

Potential energy of the system with reference to the pulley 

  )(21 xlgmxgmV   

    

Thus, the Lagrangian is given by 

  VTL   

    )(
2

1
21

2
21 xlgmxgmxmmL    

 xmm

x

L


21.





  and   gmm

x

L
21 




 

Now, Lagrange‟s equation of motion for one dimensional motion is  

  0
.

























x

L

x

L

dt

d
 

      02121  gmmxmm
dt

d
  

      02121  gmmxmm   

  g
mm

mm
x 
















21

21  

This is the equation of acceleration of Atwood machine. 


