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Classical Mechanics of Point Particles

Review of Newtonian Mechanics:
Conservation of linear Momentum:
The linear momentum of a particle of mass ‘m’ and velocity ‘v’ is define as
p=mv

Therefore the net linear momentum for a system of n-particles is

n n
P= Z pi = Zmivi
i=1 i=1
From Newton’s 2™ and 3" law we have,
dp
dt
i.e. the rate of change of linear momentum of a system of particle is equal to the net external force acting on the system.

Foxt =

If Fexe =0 then Z—f =0 and integrating we gate, P = constant.

Thus if the net external force acting on a system of particles is zero, the net linear momentum of the system
remains constant. This is the principle of conservation of linear momentum.

Conservation of Angular Momentum:
The moment of linear momentum of a rotating particle is called the angular momentum. The angular momentum
of a particle of linear momentum (p=mv) and having position vector r relative to and arbitrary origin is defined as
J=rxp 1)
For a system of n-particles, we have

J:Z‘]i:zrixpi 2)
i i
Differentiating above equation we get,

_Z dpl —xp

—Zr ><—+O

_ dp

DU 3

Where F, = % = net force acting on i" particle.

As internal force occurs is equal and opposite pair hence the net internal force acting on the system of particle is zero.
Thus from equation (3) we have,

dJ
E = Zrl x I:ie>(t = Text (4)
i

Where 7., = r-><F-ext is the torque arising due to external force only.
ext i I q g y

dJ
If =0 then —=0
Toxt = at

or J=constant.
Thus in the absence of an external torque the angular momentum of a system remains constant.
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Motion of a charge particle in external electric field:
Let a charge particle +qis thrown from ‘0’ towards the screen with a constant velocity “u’. In the absence of

electric field, charge particle directly strikes the screen at ‘C’.

Now, motion along x-axis is Y
1 2 A I
x:uxt+EaXt N— «—Screen
=x=ut+0 [-a=0] f f f f |
= I
=X —- (1) :M ! g o
u offar 1l i &
Let a uniform electric field ‘E’ is applied. In the presence of electric field, AR :
the charge particle experience a force given by | 4 ey :
F=qE —(2) [ — -
According to Newton law Y'
F=ma ---(3)
From equation (2) and (3), we get
ma =qE
a- % - (4)

m
It a constant acceleration of charge particle along y-axis since the electric field is constant.
Motion along y-axis is

1 .
y:Uyt'i‘ant

2

X
:>y:O+ -
u

N |-

1
2
Since, u, g, m, and E constant

oy =ke?

ie. yox?
This is the equation of parabola; hence any charge particle thrown in uniform electric field is always describing
parabolic path.

3 |/
<SS 3R/

- (5)

=>y=

Motion of a charge particle in a uniform magnetic field:

N

(1). If a charge particle moves in the direction of a magnetic field then no force acts on it, because the velocity vector v
-

and magnetic field vector B are parallel to each other.

- -
(2). If a charge particle ‘q” of mass ‘m’ moves with initial velocity v in a plane perpendicular to the direction of B then
the charged particle experiences a force, which is given by

- - -

qu(VXszqu A EXXBRE KERX % Ny

i i i ; ' . Xx % xo P
Since the direction of this force always ¥ A MR X

] ] - ¥ X X XX X
remains perpendicular to the velocity v ,

t
d(1_, XXAX X "X x % X x x *
—|=mv° |=0
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1
:>Emv2 =Constant. - (1)
This equation shows that the magnetic field does not work and does not changes the K.E. of the particle i.e. the force

- -
F cannot change the magnitude of velocity v, but it changes only the direction of motion and hence the charge
particles will moves in a circular path of radius ‘R’ in the magnetic field with constant speed as shown in figure. The
force provides the necessary centripetal force.

2
mv _quB
—R =2—BV —(2)

This is known as Gyro-radius. The radius with which a charge particle is travelling in circular orbit in magnetic field is
called Gyro-radius.

Angular velocity, o = % L — 3) [+ v=Ro]
m
This is known as Gyro-frequency.
Frequency, f = B — (4)
27 2zm
And Time period, ;.1 _22zm 5)
f gB

N

(3). If a charge particle ‘q” of mass ‘m’ moves with initial velocity v , making an angle ‘0’ with the direction of uniform
- -

magnetic field B as shown in figure, then the velocity v can be resolved into two components:

(a). The horizontal component v, along the direction of the magnetic field is given by

—

Vg =V Cosé

(b). The perpendicular component VT\, along the normal to the direction of magnetic field is given by

v?,:vsin@ 2
»w_:_a~_____~_?
_ stn q‘] ?
—— AL
T T e e
0
.____UUbj T ]
A GANAVIC VS R
o B B A
e e — —

Now, due to the normal component, the particle moves along a circular path of radius ‘R’ and the necessary
centripetal force is provides by this component.

mvy =qv,B
:>R=mVN :mvsine _____ 6)
qB 4B
Angular velocity, o= \%‘ = vsin 0 [+ v=Ro]
So=-vsingx— 2 _9B (7)

mvsing m
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Frequency, f = “ ﬂ ...... (8)
27 2zm
And Time period, ;.1 _22m ©)
f gB

N
For the component velocity vy =v cos@d, there will be no force on the charge particle in the magnetic field,

— -
because the angle between vg and B is zero. Thus the particle covers the linear distance in the direction of the magnetic
field with constant speedv cosé.

Therefore, under the combined effect of the two component velocities, the charged particle in the magnetic field
will cover linear path as well as circular path i.e. the path of the charge particle will be Helical, whose axis is parallel to
the direction of magnetic field as shown in figure.

The linear distance covered by the charged particle in the magnetic field in time equal to one revolution of its
circular path is known as pitch of helix and it is
m

gB

2
d =vgT =vcosédx

Motion of a charge particle in combined electric and magnetic field: (Velocity Selector)
Let us consider that a charged particle g is moving with a velocity v in combine electric and magnetic fields of

- - -
intensities E and B respectively as shown in figure. Let the electric field E is along downward direction and the

magnetic field B is perpendicular to the plan of the paper, directed inwards.
Now due to the electric field, the force on moving charge particle is

Fo =qE
Again due to the magnetic field, the force on moving charge particle is

F, = q(Ux Ej

= F, =qvBsin90° = qvB
If the magnitude of electric field is greater than magnetic field then the charge particle tends to moves in
downwards directions. Again, if the magnitude of magnetic field is greater than electric field then the charge particle
tends to moves in the upwards directions. If the magnitude of electric and magnetic fields are equal then the charge
particle is undeflected.i.e. Straight line.
Therefore, when

Fc=F;
=gE=qvB
E
=>V=—
B

This system of combined fields is known as a velocity selector or a velocity filter, because it is used for selecting a beam
of electrons or ions having constant velocity v = Eand filtering out others by suitably adjusting the value of either

field.
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Motion of a charge particle in crossed electric and magnetic field:
Let us consider that a charged particle g of mass m, emitted at the origin with zero initial velocity into a region

- —
of uniform electric and magnetic fields. The electric field E is acting along z-axis and magnetic field B is along x-axis.

- -

The forceq E due to electric field will act along z-axis and hence it moves with a velocity v along z-axis. As the
- - -

charged particle is placed in a magnetic field B , it will experience a force, ¢(vx B) acting in the direction perpendicular

- -
to both v and B . Hence the particle will bent. The resultant force known as Lorents force is thus given by

z:q{e{cxgﬂ

Xy 2
- -
Since, vxB=[0 y 7|=%(0-0)+y(B2-0)+2(00-By)=Bzy-By?
B OO
— - [= -
Therefore, F=q E+(vaJ -q[E¢+Bzy-ByZ?] (1)
According to Newtons 2™ law,
— -
F=ma=m(jy+72) —(2)

Now, equating equation (1) and (2), we have
qE2+B2y-By2]=m(yy+73)

Now, equating the coefficient of § and 7, we have

qu=my:>y=£z' —Sj=wi=j=wt —--(3)
m
gB . y
Where, ®=——s called cyclotron frequency. Z F
m
and q(E-By)=mZ >
N
m \ B
E ) . -
o 9, 77
== q—(—— yj 4
m B
= :a)(E— yj e (4)
B o
Differentiating equation (4), we get
=7 =0(0-Y)
>7=-wwl vV=wi
=7 =-0"? - (5)

This is the differential equation of S.H.M. Its solution is
2=v™®sin(wt+¢) 0 - (6)
At, t=0, Zz=0and ¢=0.

Therefore, Zz=v]®sinat - (7)
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Now to findVv, " , differentiating equation (7), we get

7=vi®wcosat ----- (8)

From equation (4) and (8), we have

Vi @cosat = w[%— yj

= vy cosot :(E - y) _______ (9)

At, t=0, y=0andv;™ :E

Now, substituting the values of v, " in equation (9), we have
E [E .
—cosat =| ——y
B B
. E
y= E(l—COSa)t) - (10)
This is the equation for y . Now equation for Z , substituting the values of V;“ax in equation (7), we have
z :Esina)t -—---(11)
B
To get trajectory of the motion of the charge particle, integrating equation (10) and (11), we get

t
E
y= E_([(l—coswt)dt

E( sina)tj
=>y=—|t-

B 0]
y=—o-(t-sinet) (12)
w
(E
And Z=I—sina)tdt
B
0
EO{ coswt}
=>z=-2|-
Bo @ o
z :i[l—cos ot —(13)
Bw

Let, R= Bi , from equations (12) and (13), we have
)

y = R(ewt —sinat) and z = R[1—cos «t]
y . z

= = —ot=-sinwt and ——-1=—cos wt
R R

:>y_th=—Sina)t and%:—cosa)t

Squaring and adding these equations we have

2 2
bR (2-F _,

= (y-Ratf +(z-Rf =R® - (14)
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This is the trajectory for a cycloid motion, which is defined as the path generated by the point on the circumference of

E
a circle, rolling along a circle as shown in figure. In the present case the radius of the rolling circle isR = B_ , the
w
. , .. 2E . 2n Arx
maximum displacement along z-direction is— .The z-displacement becomes zero att =0, —, —. The y-
Bw 0
. o 2n . 27k
displacement in timet = — is——.
o Bow

Coordinates:
A set of values that show an exact position of a particle or a system is called coordinates. Examples of
coordinate are shown in figure below.

VA
Y (2,3) Z

__a. X (r, 9: qJ)

i i E(X, YI Z) r”f :

T 0,

(o) o > y = |

4. S H

(—1.5557] s A/ X-coordinate = r y
Y-coordinate B i atvav
X :
Constraints: ¥

The limitation or geometrical restrictions on the motion of a particle or system of particles are generally known
as constraints.
Example:

(1) The motion of point mass of a simple pendulum is restricted, since the point mass always remains at a
constant distance from the point of suspension.

(2) The motion of a rigid body is always such that the distance between any two particles remains unchanged.

Classification of constraints:

The constraints may be classified as:

1. (a) Scleronomic: When the constraint are independent of time (i.e. if the constraint relation does not explicitly
depend on time) then they are called scleronomic constraint.

Example: In case of rigid body.
(b) Rheonomic: When the constraint relations are explicitly depends on time then they are called Rheonomic constraints.
Example: When a particle (Bead) is made to slide on a moving wire.

2(a). Holonomic: A holonomic constraint is one that may be expressed in the form of an equation relating the co-
ordinate of the system and time. (i.e. Constraint relation are or can be made independent of velocity.)

The general form of such equations for a system of N-particles is

[ (T T PP y, £) =0

A N O T N rn, be the the position co-ordinates of a system and “t” denotes
the time.
Example:

(1) The constraints involved in the motion of rigid bodies in which the distance between any two particular
points is always fixed are holonomic.

(2) The constraints involved when a particle is restricted to move along a curved or surface are holonomic.

(3) The constraint involved in the motion of the point mass of a simple pendulum are holonomic.
(b) Non-Holonomic: If the constraints cannot be expressed in the form of F(ry, 1, 13
........................................ rn, t) =0, then they are called non-holonomic constraints.
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Example: (i) The constraints involved in the motion of the particle placed on the surface of a solid sphere are non-
holonomic. The condition of constraints in this case are expressed as

2 .2

r-a=>0
Where “a” is the radius of sphere. This is an inequality and hence not in form of F(ry, I, T3,
........................................ N, t) =0

(ii) The constraints involved in the motion of the molecules in a gas container are non-holonomic.
(iii) An object rolling on a rough surface without slipping involves non-holonomic constraint in the description of its
motion.

Degree of freedom:

The minimum number of independent co-ordinates (variables) required to specify the position and all the
possible configuration of a dynamical system which are compatible with the given constraints is called the number of
degree of freedom.

Example:

Q) When a single particle moves in space, it has three degree of freedom but if it is constraint to move

along a certain space curve, it has only one.

(i) When a system of two particles, moving freely in space, requires two sets of three coordinates

[e.g.—(xl, Yi, zl) and (xz, Y., Z, )] i.e. six coordinates to specify its position. Thus the system has six

degrees of freedom.
(iii) For system of N-particles moving independently of each other, the number of degree of freedom is 3N.
(iv)  An N particle with 'n' constraint relations has 3N —nindependent variables. Thus the number of degree
of freedomis f =3N —n.

Generalised Co-ordinates:

The minimum number of independent coordinates or variables which is required to describe the motion of a
dynamical system is known as Generalised Coordinates.

A system of N particles free from constraints has 3N independent co-ordinates which can easily be described by
Cartesian co-ordinates but in case of holonomic constraint 'n' the number of degree of freedom will be f =3N —n
which is less than the total number of Cartesian co-ordinates involved. Hence in the presence of constraint, Cartesian co-
ordinates fail to completely describe the configuration of the system. Therefore a different co-ordinate system was
introduced which can be particularizes according the constraint relations known as Generalised co-ordinates.

The Cartesian coordinates can be expressed in terms of Generalised coordinates. If Xq, Xo, X3, c.ovviviiininnn... Xn
be the Cartesian co-ordinates of a system of particle, then these Cartesian co-ordinates can be expressed as functions of
Generalised co-ordinate gi, 02, 03,ecvvevevineerinnenannnnnn. qn- 1.8,

X = X; (01, 02, Ogy Agoeveneeee a,.t)
Xo = Xp(0y, Uz, g Agyevvvvnem qp,.t)

Xn =X (01, G2, O, Ug-vvvvv e Un.t)
Where “t” denotes the time. These equations are called Transformation equation.
In general, ifr,, (i=123,....... be the Cartesian coordinates and g, be the Generalised coordinates then

i =101, 02,03, 0gs- - Oy, 1)
Generalised Displacement:

5
Let us consider an N-particle system for which a small displacement or; is defined by change in position

— -
coordinates r,(i=123,........ N) with time (t) kept as constant. The position vector r, of the i"" particle in the form of
generalized coordinates can be written as
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- -
f; = (01,02, 03,04,- ... .g¢,t), where f =3N—n
i = 1 (092 G5: s A1) Euler’s theorems: If f(r) be a function depends on 3-
Using Euler’s theorems variables x, y, z then f (r) can be written as
- - - - -
o ariaq +(3ri5q +3ria:] 4 +(9ri5q +5ria f)=rflxy.2) ;
A i I S eeeeereeens i 2 N lete derivative of
i oq, 1 oq, 2 205 3 aq, LR ow c;fmp ete a;erlvatlvgfo (n
P df :&dx+5dy+a—dz
or, . Z
= on = ; aq:( Xk (Since--a=0) This equation can also be written as (small change in f(r))
. . of of of
Where, g, represents generalised displacement. o =&5X+55J +55Z

Generalised Velocity:
Let us consider an N-particle system. The generalised velocity q, is the time derivative of the generalised

N
coordinates g, . The position vector r,,(i=123,........ N) of the particle in the form of generalised coordinates and time (t)
can be written as
- -
i =1 (01,092,053, 04, 0s,t)
Using Euler’s theorems

- - - - -

dri :ﬂdql+a_ndq2 +ﬂdq3 G, _|_ﬁdqf +ﬂdt
oy aq, a3 aq¢ ot
Dividing both side by dt , we have
— — - - - -
dr _ordgy on dg, Ondag 06 94 o dt
dt oq, dt oJg, dt  dgg dt oq; dt ot dt
P far, dg, Oor,
SEVi= 2w A
k1 Ok
f — -
o1 O ot

Where, q, is called generalised velocity.
(Generalised velocity associated with a particular Generalised co-ordinate g, may be described in terms of its time

derivative q.k )

Virtual displacement: A virtual displacement of a system refers to a change in the configuration of the system as the
result of any infinitesimal change of the coordinates Or; consistent with the forces and constraints imposed on the
system at the given instant‘t’. The displacement is called virtual to distinguish it from an actual displacement of the
system occurring in a time interval ‘dt’, during which the constraints and forces may be changing. In other words, any
imaginary displacement which is consistent with the constraint relations at a given instant (i.e. without allowing the real
time to change) is called a virtual displacement. So by definition, a virtual infinitesimal displacement is given by

on = dnfy_
Virtual work: Suppose a particle is subjected to a force F. If the force produces a virtual displacement or , then the work

performed by the force is termed as virtual work. The following equation defines the virtual work
oW =F.or

The force F is the sum of the constraint force ‘f” (say) and the applied force F°.
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D’Alemberts Principle:
This principles states that a system of moving particles can be considered to be in equilibrium under the action

of the external force plus an additional force —P (- rate of change of momentum) which is known as the reversed
effective force or inertia force.

Let us consider any number of force be applied to the i particle of the system. If the system is in equilibrium,
then the total force acting on it is zero. i.e.,

2RG=0 e @)

Where o, is the virtual displacement and F, is the equilibrium force acting on each particle of the system . The force F,
can be written as the sum of the external force i.e., applied force plus constraint force i.e.,

F=R*+f e (2)
From equation (1), we have

Z(Fﬁw f).or =0

1
= R+ fiop =0
i i

If the constraint force is normal to the motion i.e., f; Lo then Z fior =0

Z FPor=0 e (3)

Thus for an equilibrium of a system, the virtual work of the applied forces vanishes. This is known as the principle of
virtual work. This principle was developed by D’ Alemberts by taking

F= P. =k _pi =0
Which states that the particle in the system will be in equilibrium under a force equal to the actual force plus a reverse

effective force — P . Thus from equation (1), we have
2 (Fi=R)ar =0
i

= Z{(Fﬁ‘ +f)— Pi}.ari =0

= Z{(Fﬁ‘ - Fﬁ)-aﬁ}+z fior =0

= Z{(Fﬁ— F}).ari}w =0

Z{(Fia—r’i).ari}w ---------------- (4)

Which is the D’ Alemberts principle .

Lagrangian equation of motion from D’Alemberts Principles:
This is the equation of motion in the form of generalised coordinates. The transformation from old coordinate r,

to new generalised coordinate g; starts from transformation equations

i =6 (0 0o, 0, -~y t)
The virtual displacement is
or; or; or; or,
O =—L 00+ — 00, +—L 00, A —L D
T Ch o, (SP) o O3 o, On

a.—nﬁa. ___________________ 1
:rl_za_qj ()

j=1 “Hj
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And Vi :r.'l :ﬁq.l_{_ ar' q.z_}_ﬁq.?’_F ......... +_r' .n %
aql aQZ 5('.]3 n ot
= ﬁql +% (2)
; aq; ot
Using the Einstein’s summation conventions, the first term of the equation (2) can be written as
22 ©
q; oq,
Also, i(ﬁ):iﬁ:ﬁ (4)
dt 6q;° oq; dt oq;

Now according to the D’ Alemberts Principles,

Z{(Fia - Pi)-@ri} =0

1
= Y Reor-Y Ror =0 — (5)
i i
The first term of equation (5) can be written as
or;
Rlon = ) R _—-au;
Zi: Z,: oa;

ZZQJ@QJ‘ -~ (6)
j

Where Q; = ZFiag—n is the generalized force.
ij i
Also the second term of equation (5) can be written as

. oo (1] ar
Zpiarizzi:miriarF 4 mirial_aqj (7)
j J
The co-efficient of 0q; can be expressed as
oo arl
mr.—-

d| o o[ or

= E mlrl_.ll _Zmlri a_l

i oq; ) 1 Q;

T dmit 32 I

ij aqj ij Q;

** or; d| oT oT
-gni- e e

i a; 5 29 Qj

From equation (7), we have
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: d| or T

8qJ

Where T = 1mi |ri‘2 is the total energy of the system.
2

Substituting equation (6) & (8) in equation (5). We get

d
ZQJ qj — Zdt GT _[%J ]aqu

aqj

daT 8T6=0

ZQJ . — |19
i 8qj o
d 6T or
& e, 9 )
0q; 9j

Equation (9) is known as the Lagrangian equation of motion second kind for non-conservative system.

Case. (i) For a Conservative system: ( If Q; = Q;(q1, 02, -....... qn 1))
For a conservative system the force can be written as the gradient of some scalar function,
ie.,
=—grad V
j— Fia =—V|V y

where V is a scalar function.

Since, the generalized force, Q; is
Q=F or; ——vivﬁ ov o oV
aq; aq; ar, 0q; 0q;

Hence Lagrangens equation is

djar | oT v

dt 2q, aq; 8qJ
di a—T —ai( -V)=0 (10)
t oq, q;
Since V is a function of position only and independent of generalised velocity i.e. — =0
0q;
Lor _a(r-v)
oq;  oq;

Now from equation (10), we have

4/a@-v) —i(T -V)=0
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B s — (1)

Where L=T-V, L(qg,q,t) is called Lagrangian of the system and the equation (11) is called Eular Lagrangian equation
of motion.

When the Q; ’s are derivative from a potential energy U, then

_djou | v
dt . oq;

0q;

Q;

function, Then from Lagrangens equation for non-conservative system, we have from equation (9)

dior | o _djau | au
dt

aq'j aq; dt 6q'j aq;
:di i_(T—U) —ai(T—U):O
t 24, 9

d| oL oL
=5l _8_20 ---------------- (12)
04q; 9

Where L = T- U is called the Lagrangian of the system.

Simple Pendulum:

Let “0” be the angular displacement of the simple pendulum from the equilibrium position. If “1” be the effective
length of the pendulum and “m” be the mass of the bob, then the displacement along arc OA = S is given by

S=16 g A€ S
Radius |

Kinetic energy T :%mv2 :%mlzé2 {.-v:E _d(t9) _ 1de —Ié}

dt  dt  dt
If the potential of the system, when the bob is at O, is zero,
then the potential energy, when the bob is at A is given by
V =mg(0B)=mg(OC —BC)=mg(l —I cos @) = mgl(L—cos 0)
Hence L=T-V

=L :%mlzéz—mgl(l—cose)

Now %:—mglsine and a—If:mlzé
06
Substituting these value in the Lagrange’s equation ( here there is only one generalized coordinate ¢, =)

g[g]_a_t_o
dt 00 00
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We get, C
d ; .
a{mlz 9} +mglsing =0

— ml29+mglsind =0

:>Ié+gsin49=0

:é+lgsin9=0

This represents the equation of motion of a simple pendulum.
For small amplitude oscillation, sind=@,

Therefore the equation of motion of a simple pendulum is B
é+|g¢9 -0
This represents a simple harmonic motion of period, given by é

T:27r\/I 0
g

Linear Harmonic Oscillator:

A linear harmonic oscillator is a system of particles of mass vibrating under the action of force. In classical
mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring
force F proportional to the displacement'x '. Let us consider a block of mass ‘m’ attached with a spring. Let us displace

the block from its mean position (equilibrium position x=0) by applying an external force F’. Due to spring force ‘F’,
the block will execute linear harmonic motion. We assume that there is no any dissipation of energy during SHM and
the spring obeys Hook’s law. Hence

F=—kx (1)
Where K is spring constant.
Now, Lagrange’s equation of motion for one dimensional motion, say in “x” direction can be written as

m
dloL| oL
—|—|-—=0 e ) k
dt| . | ox |
OX
The kinetic energy of the system is N ‘fo"fbr
|
_1 2 I
T= > mv ) I 1
2 1 F ’
~Linx | | —>F
2 ] ] . . . LA N S NS S B -.\rﬁ. ~
As we know that the spring force is a conservative force. So it can be written as e—>)
Fo—yv--9 X
dx
dV =—Fdx
Therefore, potential energy,
vz—J'F.dx [-.-F:—vvz—d—v}
dx
=V =—I—kx.dx [+ F = k]
=V = %kxz +C

Where “C” is a constant of integration, which depends upon the initial conditions and “k” is spring constant. If
we choose the horizontal plane passing through the position of equilibrium as the reference level, then V =0 at x=0 so

thatC =0. Thus Lagrangian is
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L=T-V
1 21
=L="mx —=kx?
2 2
ﬁzmx and %:_kx
ox OX

Hence equation (2) takes the form

d .

—| mx [-(-kx)=0

(i)
— mx+k<=0

This is the required expression. It is an equation of simple harmonic motion and can be put in the form

X+ K x=0
m
= X+ W?x=0
Where o is the frequency of oscillation, given by
k

w=,—
m

Therefore,

. ) 2
Time period, T -
[0}

=T =27z\/E
k

Atwood Machine:
Atwood machine was invented in 1784 by the English Mathematician ‘George Atwood’ to verify the
mechanical laws of motion with constant acceleration.

The ideal Atwood machine consists of two objects of mass m; and m, , connected by an inextensible massless
string over an ideal massless pulley. If m; =m, then it is in neutral equilibrium i.e. net force is zero. If m; =m, then the
acceleration of the object is constant i.e. uniform acceleration.

Equation for constant acceleration:

Let us consider a system of two massesm, and m,, (m, >m,) suspended over a frictionless and massless pulley
of radius ‘r’ and connected by a massless, inextensible, flexible string of constraints. So, the only forces we have to
consider are: Tension force (T) and weight of the two masses w; =m;g and w, =m,g .

Force affecting onm, , PR D By B I

mg-T=ma ---- (1)
Force affecting onm, , ‘ \
T-myg=mya - (2) / a \
Adding equation (1) and (2), we get \ (‘..‘
mg—-T+T-my,g=ma+m,a T \\ /
= (my—m, )g = (my +m;)a | &
a- (ng ) al [ms
ml + m2 mz

Equation for Tension:
Using equation (1) and (3), we get
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mg-T =ma

=T=mg-ma

=T :mlg—mlx[ml_m2 Jg

m, +m,
m, —m
=>T=mg|1-—>——2%
My + M, =My +m
=T =mg| T2~ +M,
my +m,

T :( 2mm, Jg
m; +m,
Lagrangian of Atwood machine:
Let us consider a system of two masses m; and m,, (m; >m,) suspended over a frictionless and massless pulley
connected by a massless, inextensible, flexible string of constraints of length! .
Now, velocities of two masses are
v, = 9 =X
dt
Therefore, Kinetic energy

_dd-x _

and Vs m

1 2 1 2
T==mVv," +=m,v
PR PN A

1 -, 1 .
=T =2mx? +=myx?
2 2

=T =%(m1+m2)>'<2

Potential energy of the system with reference to the pulley
V =-mgx—-m,g(l —x)

Thus, the Lagrangian is given by
L=T-V

= L=%(m1+m2)>'<2 +mgx+m,g(l —x)

oL ! oL
s =(my+my)x and  —=(m-my,)g
' oX
oX
Now, Lagrange’s equation of motion for one dimensional motion is
g[ﬁ} L
dt ox OX

d .
:E(mlerz)x—(ml—mz)g =0

= (my +m, )X —(my —m, Jg =0

. (m—m
=X=|+—21g

This is the equation of acceleration of Atwood machine.



