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Oscillation 
Periodic motion: 
 A motion which repeats itself over and over again after a regular interval of time is called a periodic motion. The 

regular interval of time, after which the periodic motion is repeated again, is called its time period. 

Example:  

1. Rotation of earth around the sun. 

2. Rotation of an electron around the nucleus. 

3. Vibration of a simple pendulum. 

4. Vibration of a loaded spring. 

5. Vibration of a stretched spring. 

 

Oscillatory motion: 
 A motion that repeats itself over and over again after a regular interval of time about its mean position within two well 

defined limits (called extreme position) on either side of the mean position is called oscillatory or vibratory motion. 

 All oscillatory motions are periodic motions but all the periodic motions are not oscillatory. 

Example: 

1. Vibration of a simple pendulum. 

2. Vibration of a loaded spring. 

3. Motion of a liquid column in a U-tube. 

4. Motion of a body dropped in tunnel along the diameter of the earth. 

 

Simple Harmonic Motion: (SHM) 

 A simple harmonic motion is an oscillatory motion in which the restoring force is proportional to the displacement 

from the mean position and is directed towards it. 

Let ‘y’ be the displacement of a vibrating particle from the mean position at any instant ‘t’. In the case of a particle 

executing SHM, force is proportional to the displacement and is always oppositely directed to it. 

 That is   yF   

   ky
dt

yd
m 

2

2

 

 Where k is the proportionality constant is referred to as the spring  

constant or the stiffness factor or force constant. 

 Or  y
m

k

dt

yd


2

2

 

   02

2

2

 y
dt

yd
 ,  Where 

m

k
2 . 

This equation is differential equation of SHM. 

 

Relation between SHM and uniform circular motion: 

 Let us consider a particle ‘A’ undergoing uniform circular motion in a circle having XOX
/
 and YOY

/
 as the horizontal 

and vertical diameters respectively. Let ‘P’ be the foot of perpendicular drawn from A upon one of the diameters, say vertical. 

‘P’ is called Projection of A or Shadow of A. While A is at X, its projection P is at O. As A moves from X to Y, ‘P’ moves 

from O to Y along the vertical diameter. As A moves from Y to X
/
, P comes back from Y to O. 

 Thus, A completes its journey along the circumference of the circle, its  

projection moves from O to Y, Y to O, O to Y
/
 and Y

/
 to O. If particle A 

keep on moving, continuously, in uniform circular motion, its projection P 

keeps on vibrating to and fro about O. Motion of P along YOY
/
 is called SHM. 

 Simple harmonic motion is defined as the projection of uniform  

circular motion on the diameter of circle of reference. Centre O of the circle of  

reference is called the mean position or neutral position. 

Some definitions: 

Displacement: Displacement of a particle vibrating in SHM, at any instant, is defined as its distance from the mean position at 

that instant. 

 Let P be the position of projection of A, at any instant of time ‘t’. 
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 In ,OAP   sin
AO

OP
 SinOAOP   Or Sinry   

Where ‘r’ is called the amplitude of vibrations. (Amplitude of a particle, vibrating in SHM is defined as its maximum 

displacement on either side of the mean position.) 

 

Velocity:  Home Work 

 

Acceleration: Home Work 

 

Differential equation of motion executing SHM: 

(a) Let ‘y’ be the displacement from the mean position of rest at any instant  ‘t’. In the case of a particle executing SHM, 

force is proportional to the displacement and is always oppositely directed to it. 

 That is   yF   

   y
dt

yd
m 

2

2

 

 Where μ is the proportionality constant is referred to as the spring constant or the stiffness factor. 

 Or  y
mdt

yd 


2

2

 

   02

2

2

 y
dt

yd
 ,  Where 

m


 2 . 

 

(b)  From energy consideration: 

 In any conservative system, the sum of the kinetic and potential energies is constant. The particle is displaced through 

a distance y in time t during SHM. 

 Kinetic energy 
2

2

1
mv

2

2

1










dt

dy
m  

Potential energy is the total work the particle can do in changing the position. If dy  be the small displacement then  

 Potential energy Fdy  

     dyy  

When it is displaced through y, 

 Potential energy  

y
y

ydy

0

2

2


  

Total energy 









22

1 22
y

dt

dy
m


 Constant 

 

Differentiating both sides with respect to t, we get 

  02
2

.2.
2

1
2

2


dt

dy
y

dt

yd

dt

dy
m


 

 Or 0)(
2

2

 y
dt

yd
m

dt

dy
  

 Or 0)(
2

2

 y
dt

yd
m   

 Or 0
2

2

 y
mdt

yd 
 

 02

2

2

 y
dt

yd
 ,     Where 

m


 2 . 

This is the required equation of motion. 
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Free vibrations: 
 When a body is allowed to vibrate freely, it vibrates with a definite frequency. Such a vibration is called 

free vibration and the frequency with which the body vibrates is called its natural frequency of vibration. Its 

frequency depends on its size, mass, the elasticity of its material and the local gravity. 

 A free vibration is a SHM. If a body of mass ‘m’ executes SHM along y-direction w.r.t. time ‘t’, then the 

restoring force, 

   yF   

   kyF   

   Where k is the constant of proportionality. 

Thus  ky
dt

yd
m 

2

2

 

  0
2

2

 y
m

k

dt

yd
 

  02

2

2

 y
dt

yd
    ....(1) 

Where 
m

k2 the restoring force constant for unit deviation for unit mass = Spring constant for unit mass. 

The equation (1) is called the equation of free vibration of a body. 

 

Damped vibrations: 
  If the amplitude of vibration of a body decreases with time due to the presence of external frictional force 

(air, viscous) then the vibration is called damped vibration. 

 Suppose a particle of mass ‘m’ is oscillating along y-axis under the action of a restoring force proportional 

to the displacement ‘y’ from the position of equilibrium (i.e. y ) and a damping force proportional to the 

instantaneous velocity (i.e. 
dt

dy
R ).These two force are balanced by the inertial force of the body, i.e. 

  
dt

dy
RyF    

 
dt

dy
Ry

dt

yd
m  

2

2

 

 0
2

2

 y
mdt

dy

m

R

dt

yd 
 

 02 2

2

2

 y
dt

dy
b

dt

yd
       ----- (1)  

 Where  is a constant and is called the spring factor or stiffness factor, R is a frictional force per unit 

velocity, 
m

R
b 2  is the resisting force per unit mass per unit velocity or coefficient of friction i.e. damping 

coefficient and 
m


 2 is the resisting force per unit displacement per unit mass or angular frequency of vibration 

in the absence of damping. 

 To solve the equation, let 
t

cey


 be a trial solution, where ‘c’ and α are arbitrary constants. 

Differentiating we get 

  
t

ce
dt

dy 
  and 

t
ce

dt

yd 
 2

2

2

  

Therefore, from equation (1), we get 

  0)2( 22 
t

ceb


  

  0)2( 22   b      

a

acbb
x

iscbxax

equationtheofsolutionthe

2

4

0

2

2







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It has two roots, 

2

4)2(2 22

1







bb
  and  

2

4)2(2 22

2







bb
  

2

2 22

1








 







bb

   
2

2 22

2








 







bb

 

22
1   bb     22

2   bb     

Therefore, the two possible solutions of equation (1) are 

 
t

ecy 1
11


   and  

t
ecy 2

22


  

Since the equation (1) is a linear homogeneous equation its general solution is given by the principle of 

superposition as  

  21 yyy   

  
tt

ececy 2
2

1
1


  

  

tbbtbb

ececy






















2222

21



 

  








































 tbtb

ececbtey

2222

21



 ---- (2) 

Where C1 and C2 are two arbitrary constants to be evaluated from the given initial conditions . The nature of the 

solution (2) depends on the relative values of ‘b’ and ‘ ’. 

 In the expression (2), both 

tbb

ec









 22

1



 and 

tbb

ec









 22

2



tends to zero when time ‘t’ 

tends to infinity. Hence .0  tasy   

 Let the system have a maximum displacement 
0

y  and zero velocity initially i.e. at 0t , 0yy   and 

0
dt

dy
 . 

 Therefore from equation (2) we get  

   




  0

210
00 ececey  

   021 ycc        ---------- (3) 

And 



































 tbbtbb

ecec
dt

d

dt

dy
2222

21



                      

               

tbbtbb

ebbcebbc



























 






 

2222

22
2

22
1



  

At 0t , 0
dt

dy
 . 

       022

2

22

1

00 ebbcebbc    

      22

2

22

10   bbcbbc  

       021

22

21  ccbccb   



e-Adhyayan, B.Sc. 1st Semester Core (CBCS), Paper-C-II (Mechanics), Madhujya Gogoi, Dhemaji College 10 
 

     021

22

0  ccbyb      (using equation 3) 

   
22

0
21




b

yb
cc      -------- (4) 

Now equation  )4()3(  

  
22

0
02121




b

yb
ycccc  

  

















22
01 12

b

b
yc  

  

















22
01 1

2

1

b

b
yc     ------- (5) 

And equation  )4()3(  

  
22

0
02121




b

yb
ycccc    

  

















22
02 1

2

1

b

b
yc     ------ (6) 

Substituting the values of C1 and C2 in equation (2), we get 

tbbtbb

e
b

b
ye

b

b
yy





















































2222

22
0

22
0 1

2

1
1

2

1



 

   

Case-I:Overdamped motion i.e. Large damping: If the damping force is very large i.e. 
22 b  then 

22 b is real (positive quantity), the value of ‘y’ consists of two terms both together falling exponentially to 

zero and the motion is non-oscillatory, aperiodic or dead beat type. If the motion is started with an initial 

displacement ‘
0

y ’ but no initial velocity, then the displacement gradually falls off to zero with time and the body 

returns to the equilibrium position without any oscillation about the equilibrium position. This type of motion is 

found in a dead beat galvanometer or a pendulum immersed in a highly viscous liquid. The variation of 

displacement ‘y’ with time‘t’ is shown in fig. 1-I. 

 

 

 

 

 

 

 

Case-II: Critical damping:  If  22 b  then the motion is also non-oscillatory, but here the rate of decay is 

much faster than the overdamped case and the motion is called critical damping. The variation of displacement ‘y’ 

with time‘t’ is shown in fig.1-II. 

Fig. 1-I and II 

O t 

y0 

y 

II 

I 

Overdamped 

Critically damped 
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 The critically damped condition is useful if we desire most quick decay without oscillation. In a pointer-

type galvanometer we want the pointer to move smoothly and quickly to a new equilibrium position when current 

is sent through it. This helps us to take the reading immediately after the meter is connected to a circuit. 

Case-III: Damped oscillation i.e. Small damping: If the damping force is small i.e. 
22 b  then 

22 b is negative quantity i.e. imaginary and we can write  

     22222222 1 bibbb    

Hence equation (2) reduces to 

 



































 tbtb

ececbtey

2222

21



 

 



































 tbitbi

ececbtey

2222

21



 

xixeix sincos    and xixe ix sincos   











 









 






 






  tbictbctbictbcbtey 22
2

22
2

22
1

22
1 sincossincos       














 






  tbccitbccbtey 22
21

22
21 sin)(cos)(   

Let 0
22

221121 )(,)(   bandAcciAcc  

 tAtAbtey 0201 sincos    

Putting  sincos 0201 AAandAA  , we can write 

  sinsincoscos 0000 tAtAbtey   

  sinsincoscos 000 ttbteAy   

   tbteAy 00 cos       ------- (7) 

Where ‘ 0A ’ and ‘ϕ’ are real constant to be evaluated from the given initial condition . Equation (7) represents a 

damped oscillatory motion with an angular frequency 22
0 b  , whose amplitude bteA 

0 decreases 

exponentially with time as shown in fig.2.  and due to the presence of damping the frequency slightly reduces i.e. 

the time period is slightly greater than the time period for free natural vibration. 

 To evaluate the constant ‘ 0A ’ and ‘ϕ’, let at 00,0 v
dt

dy
andyyt  . 

Therefore, from equation (7), 

   cos00 Ay       ------- (8) 

And  




   tbteA

dt

d

dt

dy
00 cos  

       tbteAtbtbeA 00000 sincos  

  sincos 0000 AbAv   

  sin0000 Abyv   

 
0

00
0 sin




byv
A


       --------- (9) 

Combining equations (8) and (9), we get 
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2

0

002
0 












 




byv
yA o  

And  
00

00tan



y

byv 
  

If at 0,0 00  v
dt

dy
andyyt , then 

 
22

222

022

2

02
0

2

0

2

0

02
0 11

b

bb
y

b

b
y

b
y

by
yA o




























 

22

0

22

2

00

b

y

b
yA














 

And 
22

000

0tan
b

bb

y

by





        

Therefore, from equation (7), we get 

   tbteAy 00 cos  



















 

22

122

22

0 tancos
b

b
tbbte

b

y
y







  ---(10) 

The motion expressed by equation (10) is a damped oscillatory motion, the amplitude decreasing exponentially 

with time. 

 

 

 

 

 

 

 

 

 

Logarithmic decrement:  
  In case of damped oscillations, the amplitude of the oscillations decreases exponentially with time by 

damping factor 
bte . This decrease in amplitude is often expressed in terms of the logarithmic decrement ‘λ’, 

which is defined as the natural logarithmic of the ratio between the two successive amplitudes on the same side of 

the mean position of a damped oscillation separated by one full period. 

 The amplitude of the damped oscillations at any time ‘t’ is given by 

   bteAA  0   

If the oscillation starts from mean position, then after a time 
4

T
t  where ‘T’ is the time period, the oscillating 

particle goes to extreme position. Let the first amplitude be denoted
1

A , then 

   4
01

bT

eAA


  

-y0 

+y0 

O t 

Fig.2: Damped oscillatory motion 
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 The particle will come to the mean position and then go to the extreme position on the other side, again 

come back to the mean position and go to the extreme position on the same side after a time T, i.e. 
4

T
T   from 

start. 

 Let the second amplitude be 2A , then 

   





 


4

02

T
Tb

eAA  

Similarly, the successive amplitudes of the 3
rd

, 4
th
, 5

th
, etc. oscillations will be given by  

   





 


4

2

03

T
Tb

eAA  

   





 


4

3

04

T
Tb

eAA  

   --------------------------- 

   --------------------------- 

   





 


4

)1(

0

T
Tnb

eA
n

A  

Hence  
bT

e
nA

nA

A

A

A

A

A

A





1
............

4

3

3

2

2

1  

Taking natural logarithms (to the base e), we have 

  )(
1

log............
4

3
log

3

2
log

2

1
log saybT

nA

nA

eA

A

eA

A

eA

A

e



  

Where ‘λ’ is the logarithmic decrement. 

 

Force Vibration: 
 The oscillation produced by an oscillator under the effect of an external periodic force of frequency other 

than the natural frequency of the oscillator is called force vibration. 

 Let an external periodic force ptF sin  of frequency 
2

p
 and amplitude F  is acting on a particle of mass 

‘m’ executing S.H.M. in a resisting medium. If ‘y’ be the displacement of the particle then the equation of motion 

of the particle is  

  ptF
dt

dy
Ry

dt

yd
m sin

2

2

    

  ptFy
dt

dy
R

dt

yd
m sin

2

2

   

  pt
m

F
y

mdt

dy

m

R

dt

yd
sin

2

2




 

  ptfy
dt

dy
k

dt

yd
sin2

2

2

     --------- (1) 

Where 
m

R
k   is the damping coefficient, 


 ,2

m
  is the stiffness constant or spring constant, 





2
 is the natural 

frequency of the system and 
m

F
f  . 

 Now, replacing 
dt

d
 by ‘D’ in equation (1), we get 
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 ptfykDyyD sin22    

   ptfykDD sin22    

 
 22

sin




kDD

ptf
y  

 
kDp

ptf
y




22

sin


   Writing 2p  for 2D  

 
  
  22222

22 sin

Dkp

ptkDpf
y









 

 
  

  22222

22 sinsin

pkp

ptkDptpf
y









 

        
 

  










 pt

dt

d
kptp

pkp

f
y sinsin22

22222



     

dt

d
D   

 
  ptpkptp

pkp

f
y cossin22

22222



 


 

 
 

    


























2222222222

22

22222

cos
sin

pkp

ptpk
pt

pkp

p

pkp

f
y







  

Let  
 

 





cos

22222

22

pkp

p




  And  

 




sin
22222 pkp

pk



 

Where,   
 22

1tan
p

pk


 


 

Therefore,  

 

 
 



 sincoscossin
22222

ptpt

pkp

f
y

  
 



 pt

pkpm

F
y sin

22222

 

   pt
pZ

F
y sin        ------- (2) 

Here,   22222 pkp
p

m
Z    

 
  22

2

2222

pk
p

pp

p

m
Z 





 

 
  2

2
22

k
p

p
p

p

m
Z 











 




 

 2

2
2

kp
p

mZ 
















 

 22

2
2

2 mkp
p

mZ 
















    

kmR

m

R
k




 

 2

2
2

Rmp
p

m
Z 

















 

 2

2

Rmp
pm

m
Z 











   ,2

m


   
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 2

2

Rmp
p

Z 










 

 22 RXZ         ----------- (3) 

Where   mp
p

X 


 

Hence  


 pt
RXp

F
y sin

22
     ------------ (4) 

Where Z is known as mechanical impedance given by 22 RXZ  ,  X is the Reactance and R is the resistance. 

(i) If  is large then Z reduces to 
p


 and the system is said to be stiffness controlled. 

(ii) If R is large then Z reduces to R  and the system is said to be resistance controlled. 

(iii)  If m is large then Z becomes equal to mp  and the system is said to be mass controlled. 

 

Amplitude Resonance: Maximum Displacement of the system: 
 The displacement of force vibration is 

    pt
pZ

F
y sin  

   22222 pkp
p

m
Z    

 

 
 



 pt

pkpm

F
y sin

22222

    ----- (1) 

Displaced amplitude is maximum when the values of m  or   22222 pkp   in equation (1) is minimum i.e. for 

maximum displacement, 

    022222 







 pkp

dt

d
  

     0
2

1 222222
1

22222 






 






 


pkp
dt

d
pkp    

 

 
  022.2

2

1 222

22222













 pkpp

pkp





  

   024 222  pkpp  

   222 24 pkpp    

  
2

2
22 k

p    

 
2

2
22 k

p    

 
2

2
2 k

p    ------- (2) 

Which is the condition for amplitude resonance . 

 Thus displacement amplitude is maximum when forcing frequency 
2

p
 is equal to 

22

1 2
2 k



 that is 

when the forcing frequency is slightly lower than natural frequency 




2
 which is nearly equal to the frequency of 

the damped system 
22

1 2
2 k



. Therefore at ~p , we have from equation (1) 
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  22222 pkpm

F
A







 

 
22

max

km

F
AA         

   
mk

F


k

f
      f

m

F
  

Fig. 1 represents the curves showing the variation of amplitude with the change of frequency of the force with 

varying degree of damping. The amplitude is infinite which does not occur in the nature as ‘k’ is never zero. For 

finite value of ‘k’ the amplitude is maximum when p = ω.  

 

. 

K=0 

 

 

 

 

Amplitude 

O p = ω 

K=4 

K=3 

K=2 

K=1 

p  

Fig. 1 


