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Oscillation

Periodic motion:

A motion which repeats itself over and over again after a regular interval of time is called a periodic motion. The
regular interval of time, after which the periodic motion is repeated again, is called its time period.
Example:

1. Rotation of earth around the sun.

2. Rotation of an electron around the nucleus.

3. Vibration of a simple pendulum.

4. Vibration of a loaded spring.

5. Vibration of a stretched spring.

Oscillatory motion:

A motion that repeats itself over and over again after a regular interval of time about its mean position within two well
defined limits (called extreme position) on either side of the mean position is called oscillatory or vibratory motion.

All oscillatory motions are periodic motions but all the periodic motions are not oscillatory.
Example:

1. Vibration of a simple pendulum.

2. Vibration of a loaded spring.

3. Motion of a liquid column in a U-tube.

4. Motion of a body dropped in tunnel along the diameter of the earth.

Simple Harmonic Motion: (SHM)
A simple harmonic motion is an oscillatory motion in which the restoring force is proportional to the displacement
from the mean position and is directed towards it.

Let “y’ be the displacement of a vibrating particle from the mean position at any instant ‘t’. In the case of a particle
executing SHM, force is proportional to the displacement and is always oppositely directed to it.

Y
That is Foc—y T
d 2
m —2y =—ky o P
dt YIyF
Where k is the proportionality constant is referred to as the spring
constant or the stiffness factor or force constant. -0
d? k
o ey k,
dt m
d? k
:—3/+a)2y20, Where @° = —.
dt m vy

This equation is differential equation of SHM.

Relation between SHM and uniform circular motion:

Let us consider a particle ‘A’ undergoing uniform circular motion in a circle having XOX' and YOY’ as the horizontal
and vertical diameters respectively. Let ‘P’ be the foot of perpendicular drawn from A upon one of the diameters, say vertical.
‘P’ is called Projection of A or Shadow of A. While A is at X, its projection P is at O. As A moves from X to Y, ‘P’ moves
from O to Y along the vertical diameter. As A moves from Y to X/, P comes back from Y to O. N=7
Thus, A completes its journey along the circumference of the circle, its
projection moves from O to Y, Y to O, O to Y’ and Y’ to O. If particle A
keep on moving, continuously, in uniform circular motion, its projection P
keeps on vibrating to and fro about O. Motion of P along YOY’ is called SHM.

Simple harmonic motion is defined as the projection of uniform
circular motion on the diameter of circle of reference. Centre O of the circle of
reference is called the mean position or neutral position.

Some definitions: Y
Displacement: Displacement of a particle vibrating in SHM, at any instant, is defined as its distance from the mean position at
that instant.

Let P be the position of projection of A, at any instant of time ‘t’.
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In AOAP, %:sine = 0P =0ASing Or y=rSing

Where ‘r’ is called the amplitude of vibrations. (Amplitude of a particle, vibrating in SHM is defined as its maximum
displacement on either side of the mean position.)

Velocity: Home Work
Acceleration: Home Work

Differential equation of motion executing SHM:

(@) Let ‘y’ be the displacement from the mean position of rest at any instant ‘t’. In the case of a particle executing SHM,
force is proportional to the displacement and is always oppositely directed to it.
That is Foc—y
d?y
m—-=—y
dt?
Where p is the proportionality constant is referred to as the spring constant or the stiffness factor.
2
Or d_y = —ﬁ
dt>  m
d2
:>—3/+a)2y=0, Where o? = £
dt m

(b) From energy consideration:
In any conservative system, the sum of the kinetic and potential energies is constant. The particle is displaced through
a distance y in time t during SHM.

Kinetic energy = % mv2 = % m[%}z
Potential energy is the total work the particle can do in changing the position. If dy be the small displacement then
Potential energy = Fdy
=pydy
When it is displaced through vy,

Y 2
Potential energy = j Lydy :%
0

1 (dyY uy?
Total energy =—m Y +& = Constant
2 \dt 2
Differentiating both sides with respect to t, we get
2
1, zﬂ dy +Ho dy _ 0

2 dt dt? 2 dt
2
Or ﬂmdy

—+y)=0
dt = dt? )
d?y
Or m—-+ =0
( e Hy)
d’y  u
Or —+—y=
dt? m’
d2y

+w?y=0, Where o’ =

ENRS

at?

This is the required equation of motion.
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Differential equation of simple harmonic maotio

a2y &
di2~ mY Or

A / k.
where ®= Y 7 18 a constant which depends upon the mass of the body in S.H.M. and
the nature of the medium in which it is vibrating

Multiply both sides by 2 % .

dy d?
28X aY __ 2 o,y
dtdtZ .2ydt

dlayT_d
or dt[dt] =@ o)

Integrating with respect to ¢,
2

d.
_d%) =-w0?y2+C

Where ‘C’ is the constant of integration.

In case of S.H.M., if y = + A (amplitude), % =0

0=-w?A2+C or C=w?A?
Substituting for C, we get

dy 2_ 2
{E[) ——0)2y2+(!)2A

or ?d_:.‘t’ - "«"(‘42 —y?)
dy
or O
Integrating both sides, we get
dy
= | odt&=Z
'\J A2 — _},2 .
where ‘¢’ is the constant of integration.
sin'l(% ]= ot + ¢
7 fj: = sin (0t + ¢)
' w(4)
= i + } ) ) . )
) y=Ao : lacement of the body vibrating in simple

. . 1 aneous dJEP . A . LAY
harniﬂﬁﬂiﬁ iﬁefstiif:tuﬁfon which represents the motion. In this equation, 4

=mdt
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hich is the constant of integration represents ty,

represents the amplitude while ‘¢’ w ding the state of part.]
e

initial phase of vibration. ‘¢’ gives us the information regar
when we started measuring time.
(i) If we start measuring time from the
position in positive direction
=0
Therefore, equation of S.H.M. can be written as
y=Asin o S
(ii) If the time ‘is measured from the instant, the particle is on the positive
extremity, ¢ = n/2

instant the particle leaves the Mean

L y=Asin (ot + 1t/2)
o y=A cos ot

(iii) If the time is measured from the instant, the particle leaves the mean position
in negative direction, ¢ =7t

y =A sin (@ + )
o y=-Asin ot

(iv) If the time is measured from the instant, the particle is on the negative
extremity, ¢ = 3n/2

y =A sin (ot + 3n/2)
B . y=-Acos .
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A particle, execut

of energies.

(i) Kinetic energy (Ep). It is the energy possessed by the particle by virtue of its

Motion, |
If4 is the instantaneous velocity of the particle,

1 (m\]Az_yz )2

Ep=7% mvu? = :21- m
T
‘A’ is its amplitude.

where ’ is the instantaneous displacement and

1 2. 43 ..(41)

R . um in the mean position while it ig zerg
Since velocity of the particle is max.
1 i 5]
the extreme position, its kinetic energy !

zero at the extreme position. | It is the energy possessed by the particle by virgye , Fits

(ii) Potential energy (Ep
position. .

As the particle moves a\ﬁrgynfr%n; ¢
directed towards the mean position. O -
done, in removing the particle to a position away

potential energy. It can be calculated as ft:nllfu:wifs.SS o5 at any Yy
Let ‘A’ be the position of the particle ?[F‘?a " AL
instant of time, when its displacement 15 X g. 9.
Acceleration of the particleat A =-— w?x " I T
Force on the particle at A, ?_: = mm2:x: ds the M IA y
Negative sign indicates that it 1s directed towards : DIx
mean position. o T
If ‘W’ is the work done in displacing it through a small
distance ‘dx’ from A to B. 5
dW:F’. dx = Fdx cos 180°
= (-m@? x) dx (-1)
or dW = mePxdx -

. o simple harmonic motion, vibrates to and fro about its mean
position. Total energyl%gosflzﬁg particle, at any instant of time, is composed of two types

its kinetic energy ‘E}’ is given by

also maximum in mean position whig ill:

iti toring force i
e mean position, res : s alwg
ﬂ::}rk has to be done to take it away. Thigy, Oi'ﬁ
from the mean position, is called j;,

Work done ‘W in removing the particle from O to Pcanbe 'Fg 5.7 Potential energy of
obtained by integrating it between the limits 0 to y. This will  the particle at a distance

be the potential energy ‘E,,’ of the particle at any instant. ‘y’ from mean position.
w
EP=W=_[dW =J. mo? xdx
0 0

4 Y
Epzm(oz_[ Idx:m(ﬁ{%]
0

)

oo

muﬁ[;"gh

Ep =
or Ep =

b | -

maw?y? .(15)
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Total energy (E)

Total energy ‘E’ of the particle, at anvy ; . _ stal o
instantaneous kinetic and potential energies.y instant of tlmg, is the sum t

e 1
E-Ek+Ep=§m(,)2 (A2_y2) +%m0)2y2

| |
Em(o2 (A2 - y2 +32)
1

=3 mw2A2 .(16)

From equation (16), it is clear —

o instantaneous total energy is 7 m w? A2
thattgndent of the displacement of AN — =
indep article, i.e., whatever, the

the P t may be it is goi
A emen going to
d;spfi‘; the same. In other words

rem f a particle ]
energy of @ p le executing
quk harmoruc _mﬂ{mn leays
S ains constant. Kinetic energy Ky,
oot ential energy 'Ep’, and total energy
g plotted as a function of time are
shown in g. 5.8. The curves
iﬂdicate that ‘Ek, and ‘Ep’ are
complementary to each other, Asthe
icle moves away from mean
position, ki_netic energy  gets
transformed into potential energy till the transformation is complete at extreme
position. While coming from extreme to mean position it gets converted from potential

to kinetic energy. This conversion is in accordance with the law of conservation of
energy.

DISPLACEMENT

~ Fig. 5.8 Energy versus displacement :
() Kinetic energy ; (i) Potential energy ; (ii}) Total energy.

It can be shown that in simple harmonic motion the average values of kinetic and

potential energies over a complete time period are same and that is equal to half the
total energy of the particle.

(i) Average kinetic energy. Kinetic energy of the particle, in S.H.M. is given by
KE.= %m o? (A2 -y?)

Since y=Asin (& +9)
KE.=1mo?[a2-a2sin? @ -]
=lm“)2A2[I—Sinz((ﬂt+¢)]=%m0)2A2cos2 (ot + )
2

1 + cos 2 (@t + 9)

But cos? (@t + ¢) = 2 4
1+ cos 2 (¢ +
T
1+cos2(0)t+;Q)_]dt
1 1 2
(KE-)auz—T-JEma)ZA[ 2

0 1
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4T 0 )

18
- Z'HWL
A 2
(K.E-)a\):ﬁm L

- sin@oT+20) _sin2
[, G220 s e |

r in 2 sin 2
T+§‘—“§-§"-7ﬁ]

~ 4T 2

1 2
(K.E.)gy = 7y m o? A Ly

ge potential energy. Instantaneous potential energy of the partjg,

(17) Avera .
vibrating in S.H.M. is given by
PE.= % m o y?
Since y=Asin (0t +9)

P.E.=%ma)2Azsin2 (0t + 9)

But sin? (0t + §) = l_cos‘z(mH@

P.E.=%mw2A2[
T

(P'E')auf%J' %mmZAZ 1—C0822(0)t+¢):ldt
0 L

1—cos2(mt+@:|
2

T T
o

1
=Exm0)2A2 J dt—I 6082(0)t+¢)dt

n

=ZI?XmuﬁA2_t_Si“2(mt+§!)]:
! 2

|

1
(P‘E‘}m) - 4_17. m 2 A2

2

(ThsinZ(;oT+¢) } _[Oﬁ_s_ff}_?ﬁ

e

1 i - :
=4Tm(02A2 T_S£n22¢+szn22¢] [ - 20]-’[‘:41'5]

1
=me(D2A2xT

(P.E.) (19

1
av = Py mw? A2
From equations (17) and (18)
(KE)go=PE)=7ma2az_1,1

Xsmwm2A2=1
2 * total ener
us, average value of kinetic 2 2 &

A and i ; .
wm?‘l.—[;:]i1 15, 2 of the particle. Potential energy is same and is equal to halfthe
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Free vibrations:

When a body is allowed to vibrate freely, it vibrates with a definite frequency. Such a vibration is called
free vibration and the frequency with which the body vibrates is called its natural frequency of vibration. Its
frequency depends on its size, mass, the elasticity of its material and the local gravity.

A free vibration is a SHM. If a body of mass ‘m’ executes SHM along y-direction w.r.t. time ‘t’, then the
restoring force,

Foc—y
=F=—ky
Where k is the constant of proportionality.

Thus —mEY o gy

:>d—+a) y=0 ...(1)

Where »° _k the restoring force constant for unit deviation for unit mass = Spring constant for unit mass.
m

The equation (1) is called the equation of free vibration of a body.

Damped vibrations:
If the amplitude of vibration of a body decreases with time due to the presence of external frictional force
(air, viscous) then the vibration is called damped vibration.

Suppose a particle of mass ‘m’ is oscillating along y-axis under the action of a restoring force proportional
to the displacement ‘y’ from the position of equilibrium (i.e. =—xy) and a damping force proportional to the

instantaneous velocity (i.e. = —R%).These two force are balanced by the inertial force of the body, i.e.

dcy dy
>m—=—uy-R—
at ny

2
:>M+By+ﬁy=0

dt?> mdt m

2
:%+2b%+a)2y:0 ----- Q)

Where u is a constant and is called the spring factor or stiffness factor, R is a frictional force per unit

velocity, 2b=E is the resisting force per unit mass per unit velocity or coefficient of friction i.e. damping
m

coefficient and »? =~ is the resisting force per unit displacement per unit mass or angular frequency of vibration
m
in the absence of damping.

To solve the equation, let y:ceatbe a trial solution, where ‘c’ and o are arbitrary constants.
Differentiating we get

2
Y _ e and 9Y - o262t
dt dt?
Therefore, from equation (1), we gei - the solution of the equation
(a2+2ba+a)z)cea =0 ax? +bx+c=0is
= (a® +2ba+w?)=0 o —byb? —sac
B 2a
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It has two roots,

—2b++/(2b)? - 4 and —2b—+/(2b)? - 4e?
= a, =
2 2
4}b+vb2—w2j 4}b— bz—wzj

f— =
2 %2 2

Therefore, the two possible solutions of equation (1) are
oyt

:>0ll:

Yy1=0¢€ and Y2 = Czeazt
Since the equation (1) is a linear homogeneous equation its general solution is given by the principle of
superposition as
Y=yt
t

ot a,
= y=ce b +cye

(_bﬂ/@ } +cze(_b_\/@ ]t
. (m jt [_W ]t

et e o ()

=y=ce

Where C; and C, are two arbitrary constants to be evaluated from the given initial conditions . The nature of the

solution (2) depends on the relative values of ‘b’ and ‘ @ .
[—b—dbz—wz]t

(—b+Vb2—w2jt
In the expression (2), both ce

tends to infinity. Hence y >0 as t-—oc.
Let the system have a maximum displacement Y  and zero velocity initially i.e. at t=0, y =1y, and

and c,e tends to zero when time ‘t’

Y _o
dt
Therefore from equation (2) we get

Yo = eo[cle0 +cze°]
=G+C=Y T ®3)

(—b+Vb2—w2jt (—b— bz—wzjt
+c,e

o)

Att=0,ﬂ:0 .
dt

:>O:cl(—b+m)eo +c2(—b—m)e°
:>O:cl(—b+\/b2—w2)+cz(—b—\/b2 —a)z)
= —b(c, +¢,)+Vb* —w*(c, —¢c,)=0
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=-by,+ \b? — w? (C1 - Cz) =0 (using equation 3)

by
= (¢, -c,)= = (4)
Now equation (3) + (4) =

by,
b? — w?
= 2¢, = 1+L
G =Yo 7

1 b
:Cl:Ey{H?J ------- (5)
-

And equation (3) —(4) =

=C+C+C—C =Y+

by,

b? — »?

1 b
=, —EYO{l—m] “““ (6)

Substituting the values of C,and C, in equation (2), we get

1 b (—b+\/b2—a)2 )t 1 b (—b— b2 —w? ]t
:y:§y0[1+ﬁJe +§y0[1_b2—je

=0 +C -G +C =Y -

2
-

Case-1:Overdamped motion i.e. Large damping: If the damping force is very large i.e. b* >>®” then

Vb? — @? is real (positive quantity), the value of ‘y’ consists of two terms both together falling exponentially to
zero and the motion is non-oscillatory, aperiodic or dead beat type. If the motion is started with an initial

displacement * Y’ but no initial velocity, then the displacement gradually falls off to zero with time and the body

returns to the equilibrium position without any oscillation about the equilibrium position. This type of motion is
found in a dead beat galvanometer or a pendulum immersed in a highly viscous liquid. The variation of

displacement ‘y’ with time‘t’ is shown in fig. 1-1.

Yo Overdamped

Fig. 1-land Il

Critically damped

Case-l1: Critical damping: If b?=w? then the motion is also non-oscillatory, but here the rate of decay is
much faster than the overdamped case and the motion is called critical damping. The variation of displacement ‘y’

with time‘t” is shown in fig.1-11.
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The critically damped condition is useful if we desire most quick decay without oscillation. In a pointer-
type galvanometer we want the pointer to move smoothly and quickly to a new equilibrium position when current
is sent through it. This helps us to take the reading immediately after the meter is connected to a circuit.

Case-111: Damped oscillation i.e. Small damping: If the damping force is small i.e. b> <@’ then
Vb? —w? is negative quantity i.e. imaginary and we can write

Vb2 =0 ==(0? -b?) = V=1[[* -b?) = iV? 2

Hence equation (2) reduces to
S
e

v b2 —w? jt
g bt cle(

y +C,

w? jt}
—vy=e " ce (im} + cze[_i\/mjt

- eX=cosx-+isinx and e ™ =cosx—isinx
L y=e bt [cl cos(\/ w? —b? )t +ic, sin(\/ w? —b? jt +C, cos(\/ w? —b? )t— ic, sin(\/ w? —b? )t}
—y=e" bt[(cl +Cy) cos(\/a)2 —b? )t +i(o —cz)sin(\/a)2 —b? )t}

Let (¢, +¢p) = A, i(c,—C,)=A and @° —b? =y

.y =e PUA cos gt + A, sinat]
Putting A =Aycos¢  and A, = Aysing, we can write

y =& D[, cos gt cos g+ A sinaytsing]
— y = A 2 [cos awyt cos ¢ + sin antsing]

=Yy= Aoe_bt cos(ept-¢) e (7
Where © A,” and ‘¢’ are real constant to be evaluated from the given initial condition . Equation (7) represents a

damped oscillatory motion with an angular frequency w, =+va? —b2, whose amplitude Age Pt decreases

exponentially with time as shown in fig.2. and due to the presence of damping the frequency slightly reduces i.e.
the time period is slightly greater than the time period for free natural vibration.

To evaluate the constant “ A;” and ‘¢’, letat t=0, y=y, and —=v,.

Therefore, from equation (7),
Vo= Mocosg e ®)
dy _df, —bt _ }
And i [Aoe cos (gt — )
=~ A" cos{apt — )~ Aye ™ sin(ext —¢)
~Vy =—Agbcos g+ Ay Sing
= Vg =—Yob+ Ay sing
B —— (9)
)

Combining equations (8) and (9), we get
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2

2 V0+y0b

= +| ——
A Jyo o)

And  tang Yo+ Yob
Yo@o
dy
ifatt=0, y=y, and azvozo,then
2 2 2 2 12, p12
> (yob b \/ b \/a) —b2 +b
= +|— | = 1+—= 1+ = _—
AU yo ( @ j yOJ a)oz yO a)z _bz yO a)z _b2
2
w Yo®
- = =
AO yO wz_bz \/wZ_bZ
Yob b b

And  tang= =
Yoo @y @? —b?
Therefore, from equation (7), we get
y = A~ cos(ayt — )
Yoo —bt 2 1.2 -1 b
=y=—2C_¢ cos| Vo b’ t—tan "t —x ---(10)
@ —b? [ Vo’ —b? J
The motion expressed by equation (10) is a damped oscillatory motion, the amplitude decreasing exponentially

with time.
+Yo

Fig.2: Damped oscillatory motion

Logarithmic decrement:

In case of damped oscillations, the amplitude of the oscillations decreases exponentially with time by

damping factor e bt. This decrease in amplitude is often expressed in terms of the logarithmic decrement ‘A’,
which is defined as the natural logarithmic of the ratio between the two successive amplitudes on the same side of

the mean position of a damped oscillation separated by one full period.
The amplitude of the damped oscillations at any time ‘t’ is given by

If the oscillation starts from mean position, then after a time t:Tthere ‘T’ is the time period, the oscillating
particle goes to extreme position. Let the first amplitude be denoted Al , then
_bT
A=Ae 4
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The particle will come to the mean position and then go to the extreme position on the other side, again
come back to the mean position and go to the extreme position on the same side after a time T, i.e. T +% from

start.
Let the second amplitude be A, , then

- Aoe—b(T +-;,)

Similarly, the successive amplitudes of the 3 4™ 5™ etc. oscillations will be given by

—b[ZT +Tj
4

A3 = Ag®
—b(ST +1)
A4 = AOe
—b((n—l)T +J
An = Aoe
A A A An_
Hence a2 8 _Mn-l bt
A A3 M An
Taking natural logarithms (to the base e), we have
A A A _
log —1:I0g —Z:Iog 8 e = log mszzi (say)
e Ay e A e Aq e Ay

Where ‘A’ is the logarithmic decrement.

Force Vibration:

The oscillation produced by an oscillator under the effect of an external periodic force of frequency other
than the natural frequency of the oscillator is called force vibration.

Let an external periodic force F sin pt of frequency 2£ and amplitude F is acting on a particle of mass
V2

‘m’ executing S.H.M. in a resisting medium. If ‘y’ be the displacement of the particle then the equation of motion
of the particle is

d2y dy .
Mm—-=—uy—-R—+Fsinpt
a2 T g P

2

:>m%+R%+,uy=Fsinpt
d’y Rdy u_ F._
= —F+——+=Yy=—sinpt
dt? mdt my m P
2
z>%+kz—)t/+a)2y=fsinpt _________ 1)

Where k _R is the damping coefficient, w? £ u is the stiffness constant or spring constant, 23 is the natural
m m n

frequency of the system and f =

=l

Now, replacing % by ‘D’ in equation (1), we get
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D2y +kDy + o’ y = f sin pt
:>(D2+kD+w2)y: f sin pt
f sin pt
- =
y D2 +kD + @?

f sin pt . 2 2
S>y=—— Writing — p© for D
e p? +kD g-p

[(a)z— p ) kD]sin pt
(a)z_ 0 )2_k2D2
f[(coz - pz)sin pt —kD sin pt]
(wz_ p2)2+k2p2
f . d .
=>y= (a)z B p2)2 +k2p2 {(wz - pz)sln pt—kasm pt} D :a

f

[(a)z - pz)sin pt —k pcos pt]

:>y:(a)2—p2)2+k2p2
f (wz— p2) . k pcos pt
=Sy= sin pt —
\/(a)2 3 p2)2+k2p2 \/(co2 B p2)2+k2p2 \/(a)z_ pz)z K2 p?
Let (wz_pz) =00s € And kp =sine
\/(a)z—pz)erkzpz \/(a)z— p2)2+k2p2
Where, e=tan! wzk_ppz
Therefore,
f . . F .
. i t cos < -cos pt sin] = y = (pr-<)
y \/<w2_p2)2+k2p2 sin pt cos € —cos pt sine| =y m\/(wZ_p2)2+k2p2 sin(pt—e
=y= %sin(pt— e e (2

Here, z =%\/(w2 - p2)2 +k?p?

2| 2 2
:Z:m\/p @ ;p +k?p?
p p

2 2))2
:Z:mp\/{w —P } +k?

=Z=m ——pJ +k?
R
v k=—
p = R=km
=>7Z= \/[

:Z:\/(%—mpJ +R? a)2=ﬁ,
pm m

mpJ +R?
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2
=Z= (ﬁ—mpJ +R?
p
=Z=VX?+R?
Where X =£_mp
p

Hence y=

—————sin pt €)
p\/X +R?

Where Z is known as mechanical impedance given by z =vX2+R?, X is the Reactance and R is the resistance
(i) If u is large then Z reduces to £

and the system is said to be stiffness controlled

(ii) If Ris large then Z reduces to R and the system is said to be resistance controlled.
(iii) If mis large then Z becomes equal to mp and the system is said to be mass controlled

Amplitude Resonance: Maximum Displacement of the system
The displacement of force vibration is

y= %sin(pt— €)

. Z:m\/(a)z—pz)2+k2p2

p

F

= sin(pt- )
m\/(wz— p2)2+k2p2 ! ©

Displaced amplitude is maximum when the values of m or \/(a)z - p2)2 +k?p? in equation (1) is minimum i.e. fo
maximum displacement,

gt(\/(w -p )2+k2 2]
YT gt o)
2(\/(602 p )2+k2 ZJZ(wz_pz)‘zpﬁka:

—4p(a)2 )+2pk2
= 4plw? - ) 2pk2

= for-p2)-%

Which is the condition for amplitude resonance

2
Thus displacement amplitude is maximum when forcing frequency — is equal to > a)z—k? that is
T
when the forcing frequency is slightly lower than natural frequency 2 which is nearly equal to the frequency of
2
the damped system zi ® —k? Therefore at p=w®, we have from equation (1)
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E

A=
m\/(wz—pz)erkzpz
F
A=Ay = —
mv k’w?
F 1 LF_
mkeo ke m

Fig. 1 represents the curves showing the variation of amplitude with the change of frequency of the force with
varying degree of damping. The amplitude is infinite which does not occur in the nature as ‘k’ is never zero. For
finite value of ‘k’ the amplitude is maximum when p = w.




