Numerical Methods: The Trapezoidal Rule

You will have evaluated definite integrals such as

3
2
/1’ (x )dx
before. In doing this, you are evaluating the area under the graph
of f(x) = x? between x = 1and x = 3. This is only possible if
you can find an antiderivative for x%. In this example it is easy, the
antiderivative is

F(x)= %XB + ¢, where ¢ is a constant.

and
3
f1 () dx = F(3)—E(1)
=33 +e- (;.,mc)
_%
=3
Sometimes it is not possible to find the antiderivative. In such

cases you need to use a numerical method. Two common methods
for calculating definite integrals are:

1. Simpson’s rule, and
2. The trapezoidal rule.

This module considers the trapezoidal rule.

The Trapezoidal Rule

The trapezoidal rule works by estimating the area under a graph by a
series of trapezoidal strips. In the figure below, we see an approxima-
tion to

B
/ xe 0y
1

using three strips. The approximated area is shown in red.

5

Appoximate Areq = A, + A, + A,



In this case, we see the trapezoidal rule will underestimate the first
strip, is close in the second strip and will overestimate in the third
strip. The trapezoidal rule approximates the area under the curve
by adding the areas of the trapezoids. Any number of strips may be
used. The accuracy increases as the number of strips increases.

For the definite integral

j;bf(x}dx

the trapezoidal rule has the form

b h
/,, fE)dx= 3o+ +2u+. .+ 2 tya] (1)
where

1. n is the number of strips and can be any number.

2. Yu = f(xy) are the values of f (x,) at the points x; where i =
0,1,2,...,n. Note that xp = a, x, = b.

3. h is the width of each strip and

4. xy=a+h,xo =a+2h, x3 =a+3h,... and so on.

Example 1

Approximate f: xe~05%dx using the trapezoidal rule with 3 strips , to
3 decimal places.

Wehaven =3, a=xy=0and b = x3; =6 s0

h=b—a

n

[l
=SS N

xp=0and yp = f(x9) = 0.

x1=0+h=2andy, = f (x1) = 2¢~! = 0.73576.
x»=0+2h=4andy» = f(x2) = 4672 = (0.54134.
x3=0+3h=6and y3 = f(x3) = 6e—3 = (.29872.
Substituting into (1) above we get:



6 2
./0 xe 0%y = 5 [vo + 21 + 22 + v3]

= 0+2(0.73576) + 2 (0.54134) + 0.29872
— 2.85292.

Hence, to three decimal places, _fﬂe xe 055 dy =~ 2.853.

Example 2

Approximate fol v1+ x3dx using the trapezoidal rule with 5 strips,
to 3 decimal places.
In this question,n =5, a =0and b = 1 so

o
|
=)

=

Il
=B

So using the formula above we get
xg=0and yp = f(x9) = L.

x;=0+h=02and y; = f(x1) = /1+ (0.2)> = 1.00399.
X3 =042k =04and yo = f (x2) = 1+(n4)3—1.n3150.
x3=0+3h=06and y3 = f(x3) = /1 + (0.6)° = 1.10272.
xg=0+4h=08and y, = f(xy) = \/1+ (0.8)° = 1.22963.
x5 =045k =10and y5 = f (x5) = \/1+ (1)* = 1.41421.

Substituting into Substituting into (1) above we get:

1 0.2
/0 V14 xBdx = = [vo +2y1 + 2y2 + 2y3 + 2y4 + ys)

=0.1[1+2(1.00399) + 2 (1.03150)
+2(1.10272) + 2 (1.22963) + 1.41421]
= 1.11499.

Hence, to three decimal places, fol V14 x3dx =~ 1.115.

Exercises

1. Use the trapezoidal rule to evaluate the integral fl3 (312 —+ 41} dx
using 3 strips to two decimal places.

2. Use the trapezoidal rule to evaluate the integral fal (3e* sin (x)) dx
using 2 strips to two decimal places.

Answers

1. 42.44

2. 2.0



Simpson’s 1/3 Rule of Integration

What is integration?

Integration is the process of measuring the area under a function plotted on a graph. Why
would we want to integrate a function? Among the most common examples are finding the
velocity of a body from an acceleration function, and displacement of a body from a velocity
function. Throughout many engineering fields, there are (what sometimes seems like)
countless applications for integral calculus. You can read about some of these applications in
Chapters 07.00A-07.00G.

Sometimes, the evaluation of expressions involving these integrals can become daunting, if
not indeterminate. For this reason, a wide variety of numerical methods has been developed
to simplify the integral. Here, we will discuss Simpson’s 1/3 rule of integral approximation,
which improves upon the accuracy of the trapezoidal rule.

Here, we will discuss the Simpson’s 1/3 rule of approximating integrals of the form

= ek

where
f(x) 1s called the integrand,
a = lower limit of integration
b = upper limit of integration

Simpson’s 1/3 Rule

The trapezoidal rule was based on approximating the integrand by a first order polynomial,
and then integrating the polynomial over interval of integration. Simpson’s 1/3 rule is an

extension of Trapezoidal rule where the integrand is approximated by a second order
polynomial.

y - f.;r(x/l dx frx)

i b X

Figure 1 Integration of a function



Method 1:
Hence

! =j-f(x)dxzj"f2(x)dx

where f,(x) 1s a second order polynomial given by
f(x)=a, +ax+a,x’

Choose

(a.f(a)), (“ ; b ,f(“ ; ¢ )) and (b, (b))

as the three points of the function to evaluate a,, a, and a,.

fa)= f,(a)=a, +a,a+a,a’

b b b bY
f[“; ]=f2(“; )=a0+a,(%)+az(a; )
fb) = f,(b)=a, +ab+a,b’

Solving the above three equations for unknowns, a,, a, and a, give

a* f(b) + abf (b) - 4abf(asz) +abf(a)+ b f(a)

a, =

a’® —2ab+b*
& ; b ] +3af (b) +3bf (a) - 4bj(
a’ —2ab+b*

{r@-21(* s

- a’ -2ab+b*

a+b

> ]+bf(b)

= 4af[

a =

Then

a
=a,(b—a)+a +a

o(b-a)+a, =t ay

Substituting values of a,, a, and a, give

boa [f(a) rar{ 2] +f(b)}
6 2
Since for Simpson 1/3 rule, the interval [a,b] is broken into 2 segments, the segment width
b—a
2

[ fu)dx=

h=




Since for Simpson 1/3 rule, the interval |a,b] is broken into 2 segments, the segment width
b-a
2
Hence the Simpson’s 1/3 rule is given by

j'f(x)dwg{f(a)ﬂf[a;b}f{b)}

Since the above form has 1/3 in its formula, it is called Simpson’s 1/3 rule.

h=

Method 2:
Simpson’s 1/3 rule can also be derived by approximating f(x) by a second order polynomial
using Newton’s divided difference polynomial as

£(x)=b, +bl(x—a)+b2(x—a)(x—a;bJ

where
by = f(a)
f(“;b]—f{a)
b = a+b
2 -
a+b a+b
f(b)—/{ : ]_f[ : J—f(a)
b_a+b a+b_
b, =
b—a

Integrating Newton’s divided difference polynomial gives us
b b
[ feodx =[ £, (x)dx

= T[bﬂ +b](x-a)+b2(x—a)[x— a;bﬂdx

2 3 2 b
= {bax + b, {%—ax] +b, (% _Ba +4b)x - ala ; b)xﬂ

+b{b3 - Qa+b)b’-a’) a(a+b)(b-a)J
3 4 2

Substituting values of b,, b,, and b, into this equation yields the same result as before

[ /(e ~ 220 {f(a) +4/{“‘ - }+f(b)]

6

=§{f{a)+4]{“;’b ]+f(b)]




Method 3:

One could even use the Lagrange polynomial to derive Simpson’s formula. Notice any
method of three-point quadratic interpolation can be used to accomplish this task. In this
case, the interpolating function becomes

[x—a+bJ(x—b) ( )t b) b (x—a)[x—a+b
x—a)(x— a+
L= S 7 b f( 2 J"L b
(a——“ J(a—b) (“ —aI“ —b) (b—a)[b——“
2 2 2 2
Integrating this function gets
-%3_(Q+ib)x3+b{a-;b)x %I—(a+;)x2+abx . T
[a_a+bJ(a_b) f{a}+(a+ba}[a+bbe[ 2 J
f 2 2 2
[ f2(x)x = )
’ x_j’_{3a+b)x‘ +a(a+b}x
+= : a+b " 1)
b-a)b-——
o[-t |
b —a’ (a +3b)(b* —a’) N bla+b)(b—a)
=—3 : /(@)
[a—a+bJ{a—b)
2
b'—a’ (a+b)b’—a’)
.3 - > +ab(b—a}f(a+bJ
[a+b ](a+b ] 2
-a -b
2 2
b —a’ ~ (3a +b)b* —a’) N ala+b)b—a)
+—3 A ; 1®)
(b—a)(b—a+ ]
Believe it or not, simplifying and factoring this large expression yields you the same result as
before
° b—a a+b
[ flodn == [f(a) + 4f[T] + f(b)}

- %{f(a) raf{

a+b
2

)+f(b)]-




Method 4:
Simpson’s 1/3 rule can also be derived by the method of coefficients. Assume

[ Feods~ e, @+ f(%bJ e f(b)

b b b
Let the right-hand side be an exact expression for the integrals J'ld.x, dex, and _[ x’dx . This

implies that the right hand side will be exact expressions for integrals of any linear
combination of the three integrals for a general second order polynomial. Now

b
jldx=b—a=c1 +c,+c,

b 2 2
dexzb ¢ =c]a+czﬂ+c3b
’ 2 2
b 3_ 3 2
szafx=b 3(1 =c]a2+cz[a+bJ +c,b’
Solving the above three equations for ¢, ¢, and ¢, give
b-a
c =
6
_2(b-a)
: 3
. _b-a
6
This gives
b
2(b-a a+b) b-a
jf(x)dm < flay+ 2 )f[ : ]+ =310

{f(a} 4f(‘”b ] f(b)}

{f( )+4f[“’+‘f’ } f(b)]

The integral from the first method
] ]
[ feo)dx = [(a, +ayx +a,x")dx

can be viewed as the area under the second order polynomial, while the equation from

Method 4
. L 2b- b)Y b-
I oD )

can be viewed as the sum of the areas of three rectangles.




Example 1

The distance covered by a rocket in meters from 7 = 8s to ¢ = 305 1s given by
0
x=| zoumn[ 140000 ] ~9.8¢ |dr
d 140000 - 2100¢

a) Use Simpson’s 1/3 rule to find the approximate value of x.
b) Find the true error, E,.

¢) Find the absolute relative true error, |Ef | .

Solution
a+b
a) [f{a} 4){ ] f(b)}
a=8§8
b=30
a+b ~19
2
f(t)=20001In 140000 -
140000 — 2100¢
140000

} ~9.8(8)=177.27m/s

8) = 20001
/@) H[MUUUU—ZIUU(S)

£(30) = 20001n 140000 ~9.8(30) = 901.67m /s
| 140000 — 2100(30)
£(19) =20001n 140000 ~9.8(19) = 484.75m / s

140000 - 2100(19)

[f(a)+4f(“"’] f(b)}

(30 SJU{8)+4f(19)+f(30)]

_ ?[1?7_27 +4%484.75+901.67]
=11065.72 m



b) The exact value of the above integral 1s

a0
x =J' 20001:1[ 140000 ]-9_81 dt
) 140000 — 2100¢

=1106134 m
So the true error 1s

E, =True Value — Approximate Value
=11061.34-11065.72
=-438 m
¢) The absolute relative true error is
True Error
True Value
-4.38
—_— X
11061.34

le,| = x100

Multiple-segment Simpson’s 1/3 Rule

Just like in multiple-segment trapezoidal rule, one can subdivide the interval [a,b] nto n
segments and apply Simpson’s 1/3 rule repeatedly over every two segments. Note that n
needs to be even. Divide interval [aj b] into n equal segments, so that the segment width is
given by

h:b-a
n

Now

b X,

[ f(x)dx = [ f(x)x
where

X, =da

x,=b

jf(x)dx ff(x)dx+jf(x)dx+ ...... + ff(x)dH j S(x)dx

Apply Slmpsun S lf3rd Rule over each interval,

jf(ﬂdxz(xz _xn)[f(xu]"l'4féx|)+f(xg):l+(x4_Iz){f{x2)+4f2xl)+f(x4):l+_“

. 4)[f(xn D4 ) 2)]+ x 2)[f(x,, 4/ .)+f(xﬂ)]

if(x)dx - 2h{f(x“)+4fé"')+ f(xﬁ)}, 2h|:f(x1)+ 4fgx3)+f(x4)}+

2;{f(xn 4}+4f(;fn D+ flx, 2)}_'_2&[}”(% 2)+4ft(5xu .)+f(X.J]

= L)+ AU )+ £+t f D} 2 () + S () ot S ()} £ 2,)]



n-2

S RS WIEATED W CARRIEN

i=odd i=even
L b_ﬂ n-1 n=2
[Fde = =2 fla)+4 3 F(0)+2 XS (x)+ f(x,)
“ J‘:;r.l.ia' c—:'lz\e'n
Example 2

Use 4-segment Simpson’s 1/3 rule to approximate the distance covered by a rocket in meters
from r =8sto ¢t =305 as given by

30
x= j [momn[w] —~ 9_8:}1':‘
) 140000 — 2100z

a) Use four segment Simpson’s 1/3rd Rule to estimate x.
b) Find the true error, E, for part (a).

¢) Find the absolute relative true error, ‘e, ‘ for part (a).
Solution:

a) Using n segment Simpson’s 1/3 rule,

mz;: f(;n)+4if(z,.)+2 fo(r‘)+f(r.,)

i=odd i=even

140000 — 2100¢

f{r)=2[}001n[ 140000 ]—9_3:

So
S(@,)=f(8)
f(8)= QGOOIn[ 140000

140000 - 2100(8)

} ~9.8(8)=177.27m/s

f(t)=f(8+55)=f(13.5)



140000
140000 -2100(13.5)

£(13.5) = 2000 ln[ ] ~9.8(13.5) = 320.25m/s

f(t)=f(13.5+5.5) = f(19)

140000
140000 —-2100(19)

£(19) = 200011{ J— 9.8(19) = 484.75m / 5

St;) = F(19+35.5) = f(24.5)

140000
140000 —2100(24.5)

£(24.5) = 2000]11[ }—9_8(24_5) = 676.05m/s

fle)=r(,)=/(30)

140000
140000 —-2100(30)

£(30) = 2000 h{ } ~9.8(30) = 901.67m /s

e )+4"Zf(r)+2 "Zf(r)+f(r )

o odfi i=even

308

3(4) (8)+4Zf(‘ )+2 Zf(! Y+ £(30)

i —o(!' d i=even

= %U(B) +41(t)+4f (1) +21(t,) + f(30)]
- %U(S) +4£(13.5)+41(24.5)+2/(19)+ £(30)]

- %[1 77.27 +4(320.25) + 4(676.05) + 2(484.75) + 901.67]

=11061.64 m
b) The exact value of the above integral is

an
x= j 20001:1[&] —9.8¢ |dt
) 140000 — 21007

=11061.34 m
So the true error 1s

E, = True Value — Approximate Value
E, =11061.34-11061.64
=-0.30m



¢) The absolute relative true error is

|E,|= True Error <100
True Value
_| =93 %100
11061.34
=0.0027%
Table 1 Values of Simpson’s 1/3 rule for Example 2 with multiple-segments
n Approximate Value | E, |&]
2 11065.72 -4.38 0.0396%
4 11061.64 -0.30 0.0027%
6 11061.40 -0.06 0.0005%
8 11061.35 -0.02 0.0002%
10 11061.34 -0.01 0.0001%

Error in Multiple-segment Simpson’s 1/3 rule

The true error in a single application of Simpson’s 1/3rd Rule is given' by

__b-a)
E, = 2880 ST, a<l<b

In multiple-segment Simpson’s 1/3 rule, the error is the sum of the errors in each application
of Simpson’s 1/3 rule. The error in the n segments Simpson’s 1/3rd Rule is given by

(xz_xn]s 4
E =-"2 "1 £y x <& <,
1 2880 S 0 <&, 2
hﬁ
=—%fm(f-ﬁ)
E%I=_%J{H:[€;IJ, x”4<é-%l<xn2

__i (4)
5l

E, - *Mf“”[é’g}x» L <C, <x,

5 2880 > S
Hence, the total error in the multiple-segment Simpson’s 1/3 rule is
— ks 4
=90/ g,:_,
E, =3"E,
i=1
—_ ks 2 (4
55 /)
_ G- &
0" Z‘,f (<)

=_{b_a)5 ;f[;”{é-i)

180n* n
2




Simpsons 3/8 Rule for Integration

Substituting the form of f;(x) from Method (1) or Method (2),

1= e
< Ao
=(b_a}x{f(x0)+3f(x,)—;3f(x1)+f(x3)} o
Since
h= b-a
3
b—a=3h

and Equation (11) becomes

! z%X{f{xn}+3f(xl)+3f(x1)+f(x3)}

E =_(.b—.r1)S

L}

(12)
Note the 3/8 in the formula, and hence the name of method as the Simpson’s 3/8 rule.
The true error in Simpson 3/8 rule can be derived as [Ref. 1]

€230 x f""'(¢), where a<¢ <b
Example 1

(13)
The vertical distance in meters covered by a rocket from =8 to 7 =30 seconds is given by
3
5= [[{2000In 140000 —9.8¢ |dt
8 140000 —2100¢
Use Simpson 3/8 rule to find the approximate value of the integral.

Solution

=7.3333

£(6)=20001n| —20000 1
140000 — 21001

I~ % (F(t)+37()+3 1)+ ()]

f, =8

flz,)=2000In 140000 ~9.8x8
140000 —2100x 8

=177.2667



t,=t,+h
=8+7.3333

=15.3333
£(z,)=20001n| 140000
140000 - 2100x15.3333
=372.4629

]—9.8><15.3333

t,=t,+2h
=8+2(7.3333)
=22.6666
140000

fle,)= 200011{
’ 140000 — 2100 x 22.6666
= 608.8976

] —90.8x22.6666

t,=t,+3h
=8+3(7.3333)
=30

f(,)=20001In 140000
140000 — 2100 x 30

=901.6740

J—9.8x30

Applying Equation (12), one has
I= % x 7.3333% {177.2667 +3x372.4629 +3x 608.8976 + 901.6740}

=11063.3104m

The exact answer can be computed as
I, =11061.34m

exact

Multiple Segments for Simpson 3/8 Rule

Using n= number of equal segments, the width A can be defined as
b-a
h=
n
The number of segments need to be an integer multiple of 3 as a single application of
Simpson 3/8 rule requires 3 segments.
The integral shown in Equation (1) can be expressed as

(14)



~ [ f(x)dx

a

jf3 (ki + If;(x)dﬂ ........ . jf;(-’f)dx (s)

Using S]mpsun 3/8 rule (See Equation 12) mto Equation (15), one gets
3h {f(xa)+3f(x1)+3f( 2 )+ £ )+ (o )+ 37 (e )+ 3 (xs )+ £, }}
_2n (16)
8 |+t flx, )+ 3/ (x,0)+ 3/ (x,0 )+ £(x,)
{ f(x,)+3 Zf(x)+3 Zf(x )+2 Zf(x)+f : } (17)

=147, =258, =369,

Example 2
The vertical distance in meters covered by a rocket from ¢ =8 to r =30 seconds is given by

s -j 20001n 140000 —9.8¢ |dt
140000 — 2100¢

Use Simpson 3/8 multiple segments rule with six segments to estimate the vertical distance.
Solution

In this example, one has (see Equation 14):

£(t)=20001n| —120000 |
140000 — 2100z
30-8

o f(rf}} {8,177.2667}

t, f(6,)}=111.6666,270 4104} where t, =1, + h =8 +3.6666 =11.6666
t,, f(t,)}=1{15.3333,372.4629} where t, =1, + 2h =15.3333
t., f(t,)}=119,484.7455} wheret, =1, +3h =19
t,, f(t,)}=122.6666,608 8976} where t, =1, + 4h = 22 6666
t., f(t,)}={26.3333,746.9870} where 1, =1, + 5h = 26.3333
{ts. (1, )} = {30.901.6740} where 7, =1, + 6k =30
Applying Equation (17), one obtains:

=3.6666

,-»-\,-h-\,-h-\,-ﬂ-\,-ﬂ-\’;:-\ =
nou

Il
e

n

1-2(3 6666){17?266?+3 zf( )+3 zf( )+2 S

i=3.6,.

(¢,)+ 901_5740}

(1375 l??.266?+3(2?0.4104+608.89?6)
+3(372.4629 + 746.9870) + 2(484.7455)+ 901.6740
= 11,601.4696m



What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form

ix—y=f(x.yly(0)=yn (1

So only first order ordinary differential equations can be solved by using Euler’s method. In
another chapter we will discuss how Euler’s method is used to solve higher order ordinary
differential equations or coupled (simultaneous) differential equations. How does one write a
first order differential equation in the above form?

Example 1

Rewrite

dy
2y =137, 9(0)=5
—H2y=13e ¥(0)

n

dy

E=f{‘x'y}1 y{{)):y[}l fl]rm_
Solution

%+2y=1_3e * ¥(0)=5

dy
2 13e —2y.9(0
=13 ,(0)

5

In this case

flx,y)=13e" -2y

Example 2
Rewrite
e’ a’_y +x’y? =2sin(3x), y{()) =5
x
n
dy
£=f{x'y)1 .Y(O)=yn f{er_
Solution

oW y? =2sin(3x), y(0)=5

dx
dy  2sin(3x) - x*y’
- = , v0)=35
. = »(0)
In this case

flx,y)= 2 Si“{3x1_ X2y




Derivation of Euler’s method

At x =0, we are given the value of y =y,. Letus call x=0 as x,. Now since we know
the slope of y with respect to x, that is, f(x,y), then at x = x,, the slope is f(x,,,).
Both x, and y, are known from the initial condition y(xn)= Yo-

F

¥y

\

¥
O Predicted
value

True value

(x5, )

A J

Figure 1 Graphical interpretation of the first step of Euler’s method.

So the slope at x = x, as shown in Figure 1 1s

Rise
Slope =
P Run
_N~ N
X — X,
=f(xuayo)
From here

M =Y +f(xn-ynxx1 _xu}
Calling x, —x, the step size &, we get
ylzyn+f(xn-}'n)h (2)
One can now use the value of y, (an approximate value of y at x = x,) to calculate y,, and
that would be the predicted value at x,, given by
Y. =M +f(x],yl)h
X, =x+h
Based on the above equations, if we now know the value of y =y, at x,, then
ye-]=ye+f(‘xi'ye)h {3)

This formula is known as Euler’s method and is illustrated graphically in Figure 2. In some
books, it is also called the Euler-Cauchy method.



4’1!6 Value

Vi+1, Predicted value

Vi <
< h »
Step size -~
%
Xi Xi+1

Figure 2 General graphical interpretation of Euler’s method.

Find an approximate value of
8
[6x"ax
5

using Euler’s method of solving an ordinary differential equation. Use a step sizeof h=1.5.
Solution

8
Given j6x3dx , we can rewrite the integral as the solution of an ordinary differential equation
5

%:6):3, »(5)=0

E
where y(8) will give the value of the integral J'ﬁxjdx_
s

jx—y=6x3 = f(x.»), ¥»(5)=0

The Euler’s method equation is
Yia =¥+ fx, 3, )h

Step 1
i=0,x,=5v,=0
h=1.5
x, =x,+h
=5+1.5
=6.5

Yy =Yo +f(xnw.Vn)-h
=0+ f(5.0)x1.5
=0+(6%x5)x1.5
=1125
~ y(6.5)



Step 2
i=1,x =65y =1125

X, =x,+h
=65+15
=8

Y. =¥ +f(x1:y1)h
=1125+ £(6.5,1125)x1.5

=1125+(6x6.57)x1.5
= 3596 625
~y(8)

Hence

[6x"dx = y(8) - y(5)

=~ 3596.625-0
=3596.625



