Limit Theorems

We shall now obtain results that are useful in calculating limits of functions. These resul
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in mo
cases these results can be proved by using Theorem 4.1.8 and results from Section 3..
Alternatively, the results in this section can be proved by using ¢-§ arguments that are vei
similar to the ones employed in Section 3.2.

4.2.1 Definition LetA C R, letf:A — R, and let ¢ € R be a cluster point of A. We say
that fis bounded on a neighborhood of c if there exists a 6-neighborhood V;s(c) of c and a
constant M > 0 such that we have |f(x)| <M for all x € AN Vs(c).

4.2.2 Theorem IfA C Randf:A — R has a limit at ¢ € R, then f is bounded on some
neighborhood of c.
Proof. 1If L := limf, then for ¢ = 1, there exists § > 0 such that if 0 < |x — ¢| < §, then
| f(x) — L| < 1; hence (by Corollary 2.2.4(a)),

IF(X)| = L] < | f(x) = L| < 1.

Therefore, if x € AN Vs(c), x # ¢, then |f(x)| < |[L|+ 1. Ifc¢ A, wetake M = |L| + 1,
while if ¢ € A we take M := sup{| f(c)|, |L| + 1}. It follows that if x € A N V;(c), then
| f(x)| < M. This shows that f is bounded on the neighborhood V;(c) of c. QED.

The next definition is similar to the definition for sums, differences, products, and
quotients of sequences given in Section 3.2.

4.2.3 Definition LetA C R and let fand g be functions defined on A to R. We define the
sum f + g, the difference f — g, and the product fg on A to R to be the functions given by

(f+e)(x) :=f(x) +g(x), (f—g)lx):=f(x)—gx),
(f8)(x) :=f(x)g(x)

for all x € A. Further, if b € R, we define the multiple 5f to be the function given by
(bf)(x) := bf(x) forall x€A.
Finally, if h(x) # 0 for x € A, we define the quotient f/h to be the function given by

(%) (x) ;:‘% for all X€cA.

4.2.4 Theorem LetA C R, letfand g be functions on A to R, and let ¢ € R be a cluster
point of A. Further, let b € R.
(@) Iflimf =L and limg =M, then:

lim(f+g)=L+M, lim(f-g)=L-M,
lim (fg) = LM, lim (bf) = bL.

X—

(b) Ifh:A—R, if h(x)#0forall x € A, and if limh=H # 0, then

()L
?_T(E)_H'



Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alterna-
tively, it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (x,) be
any sequence in A such that x, # ¢ forn € N, and ¢ = lim(x,). It follows from Theorem
4.1.8 that

im(f(xa) =L, lim(g(x,)) =M.
On the other hand, Definition 4.2.3 implies that
(f8)(xn) = f(xn)g(xn)  for nel.
Therefore an application of Theorem 3.2.3 yields
lim((fg)(xn)) = lim(f(xy)g(xn))
= [lim(f (xa))] [lim(g(x,))] = LM
Consequently, it follows from Theorem 4.1.8 that

lim (fg) = lim((f£) (xn)) = LM.

The other parts of this theorem are proved in a similar manner. We leave the details to
the reader. Q.ED.

Remark LetA C R,andletf,, f,,..., f, be functions on A to R, and let ¢ be a cluster
point of A. If Ly := limf, for k = 1,...,n, then it follows from Theorem 4.2.4 by an
K=t

Induction argument that
Li+Ly+ 4 Lo=lm(fy +f 4+ +f0),

and
Ly Ly L, =lim(f, fafn)
In particular, we deduce that if L = limf and n € N, then

X=C

L" = lim (f(x))".

A—C

4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be
proved by using Theorem 4.2.4. For example, it follows from this result that since

limx = ¢, then lim x> = ¢%, and that if ¢ > 0, then
X—C X=C

(b) lim (x*+1)(x* —4) = 20.

x—2

It follows from Theorem 4.2.4 that

lim (x* +1)(x* - 4) = (li_."% (x* + 1}) (115 (x - 4))

=5-4=20.



If we apply Theorem 4.2.4(b), we have

oy (29

im -

x2x2+1 lim (x2 +1)
x—2

4
5

Note that since the limit in the denominator [i.e., lim2 (x2 + 1) = 5] is not equal to 0, then
Theorem 4.2.4(b) is applicable. -
xX—4 4

@ lm -5 =5"3

If we let f(x) := x? — 4 and h(x) := 3x — 6 for x € R, then we cannot use Theorem
4.2.4(b) to evaluate lirré (f(x)/h(x)) because

H=limh(x) =1lim (3x —6) =3-2—-6=0.
x—2 x—2

However, if x # 2, then it follows that
-4 (x+2)(x-2) 1

=6 3m-2 3%t

Therefore we have

2 _4
lim> % _ lim~ (x +2) :%<1in}?x+2) -

|

Note that the function g(x) = (x> — 4)/(3x — 6) has a limit at x = 2 even though it is not
defined there.

o

. .
(e) lim— does not exist in R.
x—0 X

Of course m 1 =1 and H := ]ing)x = 0. However, since H = 0, we cannot use

X—+ x—

Theorem 4.2.4(b) to evaluate lina (1/x). In fact, as was seen in Example 4.1.10(a), the
X—

function @(x) = 1/x does not have a limit at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function ¢(x) = 1/x is not bounded on a neighborhood of x = 0.

(f) If p is a polynomial function, then lim p(x) = p(c).
X=rl

Let p be a polynomial function on R so that p(x) = @,x" + @, X"~ + -+ ajx +
ay for all x € R. It follows from Theorem 4.2.4 and the fact that lim Xk = ¢ that

X—c

}(in!p(x) = lim [anx” +an X ax + au]

X—

= lim (@;x") + lim (an_lx""') + -+ 4 lim (@) x) + limay

X— X—C
= @ + a1 "+ aic+ag
= plo).
Hence lim p(x) = p(c) for any polynomial function p.
x—e -



(@) If p and g are polynomial functions on R and if ¢(c) # 0, then
p(x) _ple)

lim—— =—=.

weq(x)  glo)
Since g(x) is a polynomial function, it follows from a theorem in algebra that there are at most
a finite number of real numbers ¢y, . . ., ,, [the real zeroes of ¢(x)] such that Q({Ij) =(and

such that if x ¢ {a,...,an}, then g(x) # 0. Hence, if x ¢ {a,...,a,}, we can define
p(x)

F(x) i=—.

q(x)

If ¢is not a zero of g(x), then g(¢) # 0, and it follows from part () that lim ¢g(x) = ¢g(c) # 0.
Therefore we can apply Theorem 4.2.4(b) to conclude that e

plx) mp(x) i)
M) " lmg®  gle)

X—=

The next result is a direct analogue of Theorem 3.2.6.

4.2.6 Theorem Let ACR,letf:A — R, andlet ¢ € R be a cluster point of A. If
a<f(x)<b forall x€A x+#c,

and if lim f exists, then a < lim f < b.

Proof. Indeed, if L = ]imlf, then it follows from Theorem 4.1.8 that if (x,) is any

sequence of real numberts Such that ¢ # x, € A for all n € N and if the sequence (x,)

converges to ¢, then the sequence (f(x,)) converges to L. Since a < f(x,) < b for all
n € N, it follows from Theorem 3.2.6 thata < L < b. QED.

We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the reader.

4.2.7 Squeeze Theorem LetA CR,letf, g h:A — R, and let c € R be a cluster point
of A. If
flx) <g(x) <h(x) forall x€A x+#c,

and if limf = L = limh, then limg = L.

X=C X=C



4.2.7 Squeeze Theorem LetA C R, letf, g, h: A — R, and let ¢ € R be a cluster point
of A. If
f(x) < g(x) <h(x) forall x€A x#c,

and if limf = L = limh, then limg = L.

X=C K=

4.2.8 Examples (a) limﬂ ¥ =0(x>0).

Let f(x) := x*2 for x > 0. Since the inequality x < x'/2 <1 holds for 0 < x < 1
(why?), it follows that x? < f(x) = x*/* < x for 0 < x < 1. Since

. 7 .
limx*=0 and limx=0
x—0 x—0

it follows from the Squeeze Theorem 4.2.7 that lim x*/% = 0.

x—0
(b) limsinx = 0.
x—0
It will be proved later (see Theorem 8.4.8), that
—x<sinx<x forall x>0.

Since ]ir[(]] (+x) = 0, it follows from the Squeeze Theorem that ling sinx = 0.
A= K=

(c) linécosx = 1.
It will be proved later (see Theorem 8.4.8) that

(1) 1-1x*<cosx<1 forall x€eR.

Since lirré (l - %xz) = 1, it follows from the Squeeze Theorem that lirré cosx = 1.
K= X

@) lim (%——') =0
X

x=0



We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows
from the inequality (1) in part (c) that

—1x < (cosx—1)/x<0 for x>0
and that
0<(cosx—1)/x< —1x for x<0.
Now let f(x) := —x/2 for x > 0 and f(x) := 0 for x < 0, and let &(x) := 0 for x > 0 and
h(x) == —x/2 for x < 0. Then we have
f(x) <(cosx—1)/x < h(x) for x#0.

Since it is readily seen that lmglf f=0= 11m h, it follows from the Squeeze Theorem that
lim (cosx — 1)/x = -

Sin x
im (— ) = 1.
© !‘%( x)

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be
proved later (see Theorem 8.4.8) that

x——x3<smx<x for x>0
and that
xﬂsinxgx—’ax?' for x<0.

Therefore it follows (why?) that

1 —1ix? <(sinx)/x <1 forall x#0.

But since lim (l - Exz) 6 -1lim x* = 1, we infer from the Squeeze Theorem that
x={} x={}

lim (sinx)/x = 1.
x—=(0



M )lrl_r'%(x sin(1/x)) = 0.

Let f(x) = xsin(1/x) for x #0. Since —1 <sinz < 1 for all z € R, we have the
inequality

—|x| < f(x) = xsin(1/x) < |x|
forallx € R, x # 0. Since IirrlLllI x| = 0,itfollows from the Squeeze Theorem that linaf =0.
X— X

For a graph, see Figure 5.1.3 or the cover of this book. O

There are results that are parallel to Theorems 3.2.9 and 3.2.10, however, we will leave
them as exercises. We conclude this section with a result that is, in some sense, a partial
converse to Theorem 4.2.6.

4.29 Theorem Let ACR,letf:A— R and let c € R be a cluster point of A. If
limf >0 |respectively, lim f < 0},

X

then there exists a neighborhood Vs(c) of ¢ such that f(x) > 0 [respectively, f(x) < 0] for
all x e ANVs(c), x #c.

Proof. LetL := limf and suppose that L > 0. We take ¢ = %L > (in Definition 4.1.4, and
K=t

obtain a number § > 0 such that if 0 < [x — ¢| < § and x € A, then |f(x) — L| <}L.
Therefore (why?) it follows that if x € AN V(c), x # ¢, then f(x) > 1L > 0.
If L <0, a similar argument applies. QE.D.

One-Sided Limits

There are times when a function f may not possess a limit at a point ¢, yet a limit
does exist when the function is restricted to an interval on one side of the cluster

point c.

For example, the signum function considered in Example 4.1.10(b), and illustra-
ted in Figure 4.1.2, has no limit at ¢ = 0. However, if we restrict the signum function
to the interval (0, oc), the resulting function has a limit of 1 at ¢ = 0. Similarly, if
we restrict the signum function to the interval (—oo, 0), the resulting function has a limit
of —1 at ¢ = 0. These are elementary examples of right-hand and left-hand limits at

c=0.



4.3.1 Definition LetAc R andletf:A — R.

(i) If c € Ris acluster point of the set A N (¢, o0) = {x € A: x > c}, then we say that
L € R is a right-hand limit of f at ¢ and we write
=t e =l
if given any ¢ > 0 there exists a § = 8(¢) > 0 such that for all x € A with
0<x—c<3é then |[f(x) - L <.

(i) Ifc € Risacluster point of the set A N (—oo, ¢) = {x € A: x < c}, then we say that
L € R is a left-hand limit of f at ¢ and we write

limf=L or limf(x)=L

XL~

if given any ¢ > 0 there exists a § > 0 such that for all x € A with 0 < ¢ — x < §,
then | f(x) — L| < ¢.

4.3.2 Theorem LetA C R, letf:A — R, andletc € R be a cluster point of AN (¢, 00).
Then the following statements are equivalent:
(i) limf=L.

x—c+
(ii) For every sequence (x,) that converges to ¢ such that x, € A and x, > c for all
n € N, the sequence (f(x,)) converges to L.

Notes (1) Thelimits lim+f and lim f are called one-sided limits of fat c. It is possible
X— S e

that neither one-sided limit may exist. Also, one of them may exist without the other

existing. Similarly, as is the case for f(x) := sgn(x) at ¢ = 0, they may both exist and be

different.

(2) If A is an interval with left endpoint ¢, then it is readily seen thatf : A — R has a limit
at c if and only if it has a right-hand limit at ¢. Moreover, in this case the limit l‘ﬂ}f and the
right-hand limit xllﬂ f are equal. (A similar situation occurs for the left-hand limit when A
is an interval with right endpoint c.)

The reader can show that f can have only one right-hand (respectively, left-hand) limit

at a point. There are results analogous to those established in Sections 4.1 and 4.2 for two-
sided limits. In particular, the existence of one-sided limits can be reduced to sequential
considerations.



Figure 4.3.2 Graph of
Figure 4.3.1 Graph of h(x) =1/(e"*+1) (x#0)
glx) =€ (x#£0)

We leave the proof of this result (and the formulation and proof of the analogous
result for left-hand limits) to the reader. We will not take the space to write out the
formulations of the one-sided version of the other results in Sections 4.1 and 4.2.

The following result relates the notion of the limit of a function to one-sided limits. We
leave its proof as an exercise.

4.3.3 Theorem Let ACR, let f:A— R, and let ¢ € R be a cluster point of both
of the sets AN(c,00) and AN(-oco,c). Then limf=L if and only if
limf=L= lim f. e
X—t X—C—
4.3.4 Examples (a) Let f(x) := sgn(x).

We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that
xl—i.r(lml+ sgn(x) = +1 and that xl_i.nn?- sgn(x) = —1. Since these one-sided limits are different, it

also follows from Theorem 4.3.3 that sgn(x) does not have a limit at 0.

(b) Let g(x) := ¢e'/* for x # 0. (See Figure 4.3.1.)

We first show that g does not have a finite right-hand limit at ¢ = 0 since it is
not bounded on any right-hand neighborhood (0, §) of 0. We shall make use of the
inequality

(1) 0<t<e for t>0,

which will be proved later (see Corollary 8.3.3). It follows from (1) that if x > 0, then
0 < 1/x < e'/*. Hence, if we take x, = 1/n, then g(x,) > n for all n € N. Therefore
lim ¢'/* does not exist in R.

J'f_'DJrHOWf:v.)er, Jir‘lj'l e'/* = 0. Indeed, if x < 0 and we take 1 = — 1/x in (1) we obtain

0 < —1/x < e~'/*. Since x < 0, this implies that 0 < e'/* < —x for all x < 0. It follows

from this inequality that lim e'/* = 0.

x—0-

(¢) Let h(x) := l/(e”" + 1) for x # 0. (See Figure 4.3.2))
We have seen in part (b) that 0 < 1/x < e!'/* for x > 0, whence

0 1 1
<e”-"—f—1<e'-"*<x’

which implies that lim A = 0.

x—0+



Since we have seen in part (b) that 11m e'/* = 0, it follows from the analogue of
Theorem 4.2.4(b) for left-hand limits that

I 1 I
x—0- (e'ﬂ'* + I) lim e'/*+1 0+1

x=0=

Note that for this function, both one-sided limits exist in R, but they are unequal. [

Infinite Limits

The function f(x) = 1/x for x # 0 (see Figure 4.3.3) is not bounded on a neighborhood
of 0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols
oo(= +00) and —co do not represent real numbers, it is sometimes useful to be able to
say that “f(x) = 1/x? tends to oo as x — 0.” This use of Foo will not cause any
difficulties, provided we exercise caution and never interpret oo or —oo as being real
numbers.

Figure 4.3.3 Graph of
) =1 @E+09) Figure 4.3.4 Graph of
g(x)=1/x (x#0)

4.3.5 Definition Let AC R, let f: A — R, and let ¢ € R be a cluster point of A.

(i) We say that ftends to co as x — ¢, and write

lim f = oo,
X—

if for every @ € R there exists § = §(a) >0 such that for all x € A with
0 < |x = ¢| < 4, then f(x) > a.
(i) We say that f tends to —oo as x — ¢, and write

lim f = —

X—C

if for every B € R there exists § = §(f) > 0 such that for all x € A with
-0 < |x—¢ <4, then f(x) < B.



4.3.6 Examples (a) lina{l/xz) = 00.

For, if « > 01is given, let § := 1/\/a. It follows that if 0 < |x| < §, then x* < 1/« so
that 1/x* > .
(b) Let g(x) := 1/x for x # 0. (See Figure 4.3.4.)

The function g does not tend to either co or —oco as x — 0. For,if ¢ > Othen g(x) < «
for all x < 0, so that g does nottend to oo as x — 0. Similarly, if 8 < 0 then g(x) > g for all
x > 0, so that g does not tend to —oo as x — 0. U

4.3.7 Theorem Let ACR, let f,g:A — R, and let ¢ € R be a cluster point of A.
Suppose that f(x) < g(x) for all x € A, x # c.

(a) If imf = oo, then limg = oo.
X—

X—C

(b) Iflimg = —oco, then limf = —oo.

X =+l
Proof. (a) If limf = oo and a € R is given, then there exists §(a) > 0 such that if
X—

0 < |x—¢| <8(a)and x € A, then f(x) > a. Butsince f(x) < g(x) for all x € A, x # ¢,
it follows that if 0 < |x — ¢| < §(«) and x € A, then g(x) > «. Therefore lim g = oo.

X=L

The proof of (b) is similar. Q.ED.

The function g(x) = 1/x considered in Example 4.3.6(b) suggests that it might be
useful to consider one-sided infinite limits. We will define only right-hand infinite

limits.
4.3.8 Definition Let A CR andletf:A — R. If ¢ € R is a cluster point of the set
AN(ec,00) ={x €A:x>c}, then we say that f tends to oo [respectively, —oc] as
X — ¢+, and we write

lim f = oo |respectively, lim f = —oo}

x—e+ x—ot
if forevery @ € R there is § = §(«) > 0 such that for all x € A with 0 < x — ¢ < §, then
f(x) > « [respectively, f(x) < «J.
Limits at Infinity

It is also desirable to define the notion of the limit of a function as x — oo. The definition as
X — —00 is similar.




4.3.10 Definition Let A C R and let f: A — R. Suppose that (a,00) C A for some
a € R. We say that L € R is a limit of f as x — oo, and write

limf=L or limf(x)=L,
X=00 X—00
if given any ¢ > 0 there exists K = K(z) > a such that for any x > K, then |f(x) — L| < e.

The reader should note the close resemblance between 4.3.10 and the definition of a
limit of a sequence.

We leave it to the reader to show that the limits of fas x — o0 are unique whenever
they exist. We also have sequential criteria for these limits; we shall only state the criterion
as x — oo. This uses the notion of the limit of a properly divergent sequence (see

Definition 3.6.1).

4.3.11 Theorem Let ACR, let f:A — R, and suppose that (a,o0) C A for some
a € R. Then the following statements are equivalent:
(i) L= limf.

X—D0
(ii) For every sequence (x,)inA N (a,co) such that lim(x,) = oo, the sequence ( f(x,))
converges to L.

We leave it to the reader to prove this theorem and to formulate and prove the
companion result concerning the limit as x — —oo.

4.3.12 Examples (a) Let g(x):=1/x for x # 0.

It is an elementary exercise to show that lim (1/x) =0 = lim (1/x). (See Figure
434) X—00 X——00
(b) Let f(x) := 1/x* for x # 0.

The reader may show that rlirf;lo(lfxz) =0= xli.m t(lsz). (See Figure 4.3.3.) One

)

way todo this is to show that if x > 1 then 0 < I/xz < 1/x. Inview of part(a), this implies
that lim (1/x%) = 0. 0
X—DZ

4.3.13 Definition Let A CR and let f : A — R. Suppose that (a,00) C A for some
a € A. We say that f tends to oo [respectively, —oco] as x — oo, and write

lim f = 0o |respectively, lim f = —oo}
X—00 Rt &

if given any « € R there exists K = K(«) > a such that for any x > K, then f(x) > «
[respectively, f(x) < «].

As before there is a sequential criterion for this limit.



4.3.14 Theorem Let A€ R, let f:A — R, and suppose that (a,00) C A for some
a € R. Then the following statements are equivalent:

(i) lim f = oo [respectively, lim f = —oc0)].
(ii) For every sequence (x,) in (a,00)such that lim(x,) = oo, then lim(f(x,)) = oo
[respectively, lim(f(x,)) = —oc].

The next result is an analogue of Theorem 3.6.5.

4.3.15 Theorem Let ACR, let f,g: A — R, and suppose that (a,o0) C A for some
a € R Suppose further that g(x) > Ofor all x > a and that for some L € R, L # 0, we have

lim@:

L.
x—oc g(x)

(i) IfL >0, then lim\f = oo if and only if lim g = co.
(i) IfL <0, then lim f = —cc if and only if lim g = cc.

Proof. (i) Since L > 0, the hypothesis implies that there exists @, > a such that

1 3
0<—L§m<§£. for X >a.

2 " glx)
Therefore we have (5L)g(x) < f(x) < {% L)g(x) for all x > a,, from which the conclusion

follows readily.
The proof of (ii) is similar. Q.ED.



