(15 l\lllarks) Laplace Transform: 12| 04 - 16

Definition of Laplace transform, Existence theorem for
Laplace transform. Linearity property of Laplace transform,
Laplace transform of some elementary functions. (algebraic
functions, trigonometric functions, exponential functions,
hyperbolic functions). First Shifting theorem, Second
shifting theorem, Change of scale property, Laplace
transform of derivatives, Laplace transform of Integrals.

Laplace transform. Definition.

Given a function F(z) defined for all real 2 0, the Laplaqe transtorm OT
F(isa function of a new variable s given by

L{F@),s}=L{E®}=f©)=F )= jo eE() dt 2

Sufficient conditions for the existence of Laplace transform
Theorem. If F (t) is a function of class A, L { F (1)} exists.

Proof. Since F (1) is of exponential order. say 0, we can find constants

o,m(>0) andz,(>0) such that
|F ()| <me”fort21, . (1)

00

’0 o
Now. L{F(t)}:J' et F(:)dx:_[ e F(1) dt oJ e F(t) di
0 0 Iy

or L{F@®}=1 +1, say wi (@)
Since F (#) is piecewise continuous on every finite interval 0 < ¢ < lys
I, exists. Again, we have

IL,1= || e Fy ar| < [ e Fo)lde <m| e ede,by (1)
fo fo fo
—(s-o)t |7 ~(s=0)1,
= |L|<m o Tl . (D
(s-o0) | $—0

0

Now, when s > 0, then ¢ %% — 0 as t — e, Hence (3) shows that
| L, | is finite for all z, > 0 when s > 6 and hence I, is also convergent. Then
from (2), it follows that L {F (¢)} exists for all s > ©. %




1.8. Linearity prdperty of Laplace transforms. If ¢, and ¢, be constants,
then L{c F, ®O+c,F, (0} =c L{F®+c,L{F, 1)
Proof. By definition, we have

L{c, F, (1) + ¢, F, (1)} = jo e (e, Fy (1) + ¢y Fy (1) Yt

C.I e " F(t)dt vl-(-ljl e Fy(t)dr
0 0

co,LAF, (0} + ¢, L {F, (1)}, by definition.

1.9. Laplace transforms of some elementary functions
(1) Laplace transform of the function F (1) = 1.

Sol. By definition of Laplace transform, L {F (1)} = je'-" F(r) dt.
0

[ -
S - 1
L{l)= f(, e '(l)df=[-—} == provided s > 0
S
Since the integral is convergent if s > 0 and divergent if s < 0, hence the
condition s > 0 is necessary for the existence of L {1}.
(i1) To find Laplace transform of the function F (t) = t', n being any

real number greater than —|. (Meerut 91)
Sol. By definition, L {F (1)} = jo e F(t) dr.
I, {I"} = J:) e M tndt =joe—.\‘lt(ntl)—ldt. (')
From the properties of ‘Gamma function’, we know that
B e s I'(m
Joe“xx' ldx = a"')’ if a>0and m > 0. ... (i)

Replacing a by s, m by (n + 1) and x by t in (ii), we have

) 2 ['(n+1])
st (n+1)=1 e
J e 't ars e

,ifs>0andn+1>0 .

0
() = }L.{,,.}= F('l+l),s>0and g 1

sn+l
So the condition s> 0 is necessary for the convergence of the integral (i).
(iii) To find Laplace transform of the function F (t) = t", n being a
positive integer. (Osmania 2004, Purvanchal 94, Andhra 90, Meerut 91)



Sol. By definition, L {F(7)} = J-o e "F(1) dt.

L {r} = _[0 e~ t"dt = jo ey - (D)
From the properties of ‘Gamma function’, we know that

e -ax _m- [(m {
-[o eVx ld)c=(—,'"). if a>0and m > 0. .. (i)
a 4

Replacing a by s, m by (n + 1) and x by ¢ in (i), we have

o g +1
I e—.ut(n-rl)-ldt i r(n )‘ IfS S O
0 S’”.l

[ nis a positive integer = (n + 1) > 0]

() =>L{t" A F('” w:b

[-.- n is a positive mtcger =T (n+1)=n!]
Here the condition s > 0 is necessary for the convergence of the
integral (i).
(iv). Laplace transform of the function F (1) = &*.
(Purvanchal 96, Andhra 90 Meerut 91)

Sol. By definition, L {f (1)} = J' e £ (1) dt.

o &5 e~ (5= 3
L [e«u} =J e—slealdt & Je-(.\'—n)tdt’ - | L
0 0 L S—a 0

or L {e"} =1/(s —a) provided 5 > a.

Since the integral involved in the above proof is convergent if s > a
and divergent if s < a, we must take s > a for the existence of L {e*}.

(v) Laplace of the function F (1) = sin at. (Kanpur 94,95, Meerut 99)

Sol. By definition, L {F (1)} = j T e @) dr.
0

o0
2 st

; <L gy e ,
L {sinat} = J.e “sinardt = s—5 (=ssinat —acosat)
4 s“+a

0

ax

a® +b*

= al(s* + a*), provided s > 0.
Here the condition s > 0 is necessary for the convergence of the
integral involved in the above proof.
(vi) Laplace transform of the function F (t) = cos at. (Kanpur 95)

Sol. By definition, L {F ()} = J' e F(2) dt
0

{ e™ sin bx dx = (a sin bx-b cos bx):l



Sol. By definition, L {F ()} = J' e F(t) dt
0

oo
=5t

2 2

o0 2 % e
g L{cosat}:I e cos at dt =
0 s°+a

(—s cos at +a sin at)}
0

ax

[ f e™ cos bx dx = (a cos bx+b sin bx}

a’ +b?
= s/(s* + a*), provided s > 0.
Here the condition s > 0 is necessary for the convergence of the
integral involved in the above proof.
(vii) Laplace transform of the function F (t) = sinh at.
(Meerut 91, Rohilkhand 88)

Sol. L {sinh at} =L {%(em —e—m)} = é_ L {e“‘}_% L {e—a!}
1 1

I 1
2 s—a 2 s+a

sifs>aands>-aie.,|s|>a

[using result of part (iv)]
| (s+a)—(s—a) a if |
i = A > a.
o o)t A8

Ex.\l./ Find the Laplace transform of the function F(¢) = (¢* - 1)/a.
(Meerut 92, 94)
Sol. L {F (¢)}
=L {(l/a) (¢"-1)} =(l/a)L {e* -1} =(1/a) [L {e*} -L {1}]

a\s—a s s(s—a)
Ex.%ind the Laplace transform of F (t) = (sin t — cos t).
Sol. L {F (1)}
= L {(sin t — cos #)*} = L {sin® t + cos? t — 2 sin t cos t}

1 2
=L {l-sin2t}=L {1} -L {sin2t} = — - 5 3
' ) s°+2

1 1 1 1 ; '
= - e » if s>aand s > 0.

>0
= (sz 25+ 4)s (s*+4),s>0.
First shifting (or first translation) theorem.

IfL{F (1)} =f(s),‘ then L {e" F (1)} = f(s—a), where a is any real or

complex constant



Or If f(s) is the Laplace transform of F (t), then f (s — a) is the Laplace
transform of e F (1), where a is any real or complex number.
(Osmania 2004, Kanpur 95, Meerut 91, Purvanchal 92, 94
Proof. By definition, we have

o0

= L{F (D) = L e F(1) dr. (D)
Replacing s by (s — a) on both sides of (1), we get

[ J:e’<-“'">F(z) dt =re‘*"{e“’F(r)}dz

0

=L {e" F(1)}, by definition of Laplace transform.

Ex.1. Evaluate (i) L {e" cos bt} (ii) L {e* sin bt].
Sol. (i) Since L {cos bt} = s/(s* + b*) = f(s), (say)
hence by first shifting theorm, we have

: (3~a) .
L {e“cosbt})=f(s—a)= et s uSIAE (1),

(s—a)” +b*

(ii) Since L {sin bt} = b/(s* + b*) = f(s), (say)
hence by first shifting theorem, we have

b
(s+b)* +b* ' using ()

Ex.2. Evaluate (i) L {e* cosh 5t).
(i) L {e ¥ cosh 2t}  (iii) L {e“ sinh bt}.

‘Li{e¥sinbt}=f(s+a)=

Second shifting (or second translation) theorem.

non
X F (t—a),t>a
IFL{F@®} =f(s)and G () = a'deh
then L{G@®}=e“f(s)-
Proof. By definition of Laplace transform, we have
b R Jm “StG@)dtO<a<e
L{GD}. = L 2 xG(z)dt_joe Gwdr+ || e¥G@W did<a
] : \
= ja &% Odt+ Jm e ¥ F(t — a) dt, putting values of G (¢)
0 a



The Laplace Transform

=0+ ["e™F(t-a)dt = [ e F(y) qy

[Putting 7 — @ = u so that dt = du. Also note that
whenz=a, u=0and when r = oo, y = o]

o0

= e j "M E ) du = j ™ F(1)dt

) [uging a property of definite integral]
=e*“L {F@®}, by definition of Laplace transform
= e " f(s), using given result L {E(1)} = £ (s)

t—-a
Ex.1. Find L {G (1)), where G (1) = {e s> a
0,71 <a.

Sol. By second shifting theorem, if L {F ()} = f(s)

{Fa—axt>a |
and G@®= ,thenL {G (©)} = il 2 )
0,7 <a.

On comparision with the given value of G (¢), F (¢) = 'e_' and a = a.
Now,f(s)=L{F(} =L {e'}=Us-1), s> 1,

By second shifting theorem L {G O} = e f(s) = e >0,
. o i
Ex.2. Find L {G (1)}, where
\/ s 5, T2 (Rohilkhand 97)
G@=
0,t<m/3. . ¢
Sol. By second shifting theorem, fL{F®)=f (;).
@A (t-a)t>a G enL (G @) =e=f).
o B ' =sint,a="3.
On comparison with the given value of G (tz), hlere F(r)=sint,a
Now, f(s) =L (F(n}=L {sint} = l(s"+ ) I ;

;350

-. by second shifting theorem, L {G ()} =€ *f(8) = 41



-Change of scale property.
ItL{F (1)} =f(s_);hén L{F (at)} _—. (1/a) f(s/a; Toret
Proof. By definiti o —st s
y definition, fo g dt = L{F ()} = f(s)
Now, L {F (ar)} = J;) e F(at) dr =

1 Ly —sula
= ;J'o e F(ft) du, [Putting at = u so that a dr = du]

R ol {5
= —(5/(1)[ i 1 A )
a'J:) e F(f)dt,—;ftz),usmg(l)

Ex.1.IfL (F (1) = (s°=s+ I)/2s + 1) (s—1) pro've that
L{F(21)] = (s>~ 25 + 4)/4 (s + 1) (s=2).
st —s5+1
s+ D gt o
. by the change of scale property, we have

Sol. Given L {F (1)} =

L{P*(zt)}=_21_f(ijr_l_ (3/2)2_(‘9/2)_*_1 K 52_23"*'4
. 2 [2><(s/2)+1]2[(s/2)”_1] 4(“_1)2(&_2)- ,
9T 1

Ex.4. Applying the change of scale property, find
(i) L {sin 5¢} (i) L {cos 4t}
(ii) L {sinh5¢t} (v) L {cosh 5¢).
\}._15. Laplace transforms of derivatives. 39 d
- Theorem 1. Let F (1) be continuous for all t 2 0 and be of exponential

order G as t — o and if F’ (t) is of class A, then Laplace transform of the
derivative F (t) exists when s > o and L {F" (¢)} =sL {F (©)} = F (0).



Proof. We divide the proof in two parts.
Case I Let F” (7) be continuous for all # > 0. Then

L {F()} = JO e~ F (1) dt
= [e""’ F(t)]: s J‘O(—S)e""'r F(1) dt,integrating by parts
lim e F(¢) - F{0) 4 sre‘-‘" F(t) dt
0

(oo

oo L{F@}= tlLrae"” F(t)-F(0)+sL {F(1)}. (D)

Since F (¢) is of exponential order ¢, we can find constant m (>.0)
~such that | F (£) | < me for all t 2 0. i 12)
|eF@)|=e|F()|<e ™ me”, using (2)
[ P S ™, (3)
Now, for s > 0, as t — oo, me ¢~ — 0.

From (3), tl_iﬂ e "F(1) =0 for s> 0.

So when s > o, from (1) we see that L. {F” ()} exists and is given by
L{F (0} =sL{F(@)}-F(@Q). .. (4)
Cast II. Let F~ (t) be piece-wise continuous. Then

L {F ()} = J:e_” F’ (t)dt. s 53

We now break up R.H.S. as the sum of integrals in different ranges
from O to o such that F” (¢) is continuous in each of these sub-intervals. We

can now apply the procedure of case I in each such interval and finally

obtain as in above case I,
L{F ()} =sL {F @]} -F (0).

Theorem I1. Let F (1) and F’ (t) be continuous functions for all t = |
and F” be of exponential order & as t — oo and if F” (1) is of class A, the)
Laplace transform of F” (t) exists when s > ©, and is given by

L {F” () =s*L {F (1} — s F (0) - F" (0).
- P—_— A "
Theorem II1. Let F (1), F’ (t) and be F” (1) be continuous for all t > 0
and be of exponential order 6 as t — o and if F” (1) is of class A then
Laplace transform of g (t) exists when s > & and is given by

=T — wwEs R WA ovvv'b v

L{F”(t)} = s’ L{F(1)} - s* F(0) - s F (0) - F” (0). «



\)(be{rem IV. Laplace transform of the n" order derivative.
General case. Let F (1) and its derivative F* (@S aniloy F"=1 (1) pe
continuous for all t > 0 and be of exponential order & as t — oo and if

F™ (1) is of class A, then Laplace transform of F™ () exists when s > o, and
is given by

L{IF@®}=sL{F@®}-s""'F(Q) -s"2F 0@-..... - Bl (0),
" . d"F(t)
where ® = d7" .etc.

; { ' { e : Meei
Ex.1.IfL {2 (5)}2;372—’3”0” —S—I—E—L{W} (Me

Sol. Let F () =2 J(@/m) ThenF (0)=2 /(0/m) =0.

R TIRR} [ETN Iy PRSI
Now, we know that (refer theorem I, Art. 1.15)
L{F®)=sL{F@®}-EQ).
Substituting values of F” (¢), F () and F (0) in (3), we get

1 S Wogwenatae i
L () =sL P T RN

[+ giventhat L{2t/m} =1/sY?]

Vr i cosVr i, (1‘_) oV
Ex.2. IfL {sm\/;} = Es—'—j/z‘e ,show L \/t_ .

Sol. Let F (f) = sin V! sothat F(0)=0. (D)

A g™ = (2
Again, F" (1) = -c—h_ sin 712 = COS ¢ 2: i

Now, we know that (refer theorem I, Art. 1.15) .
L{F@®)=sL{F@®}-F(Q). _—



Substituting values of F” (¢), F (¢) and F (0) in (3), we get
28

2f
[+ given that L{sin Vi) =(1/2s¥? Wre ']

e cosvr| _ Vm o145 cosvr | _ |(m) _uas
or > \/; = A or L J; - (—s_) e :
Ex.4. Find L {f(1)) iff” (1) + 3f' (1) + 2f(t) =0,f(0)=1,f"(0) = 2.
[S.V. University (A.P) 1997]
Sol. Given f+3f+2f@1)=0 . (1)
with f@O)=1 and f'(0)=2 e (2)
Taking Laplace transform of both sides of (1), we get
L{f7®O}+3L{f O} +2L {f0}=L©O)=0
or SL{FO}=sfO—f O +3[sL{fO}-fOI+2L {f(n}=0
(Using results of theorems I and II of Art 1.15)
or SL{f(}-s-2+3[sL{f(0}-11+2L {f(®)} =0, using (2)
or (s+3s+2)L{f(}=s+5 or L{f(0}=(s+5/s*+3s5+2).

WM transforms of integrals.

! (s)
Theorem. IfL {F (9) = £(s), then L { [[Fe d.x} L9,
(Lucknow 97, Purvanchal 95, Kanpur 94, 95, Rohilkhand 90)

Sol. Let G (1) = _’:F(x) dx. Then G'(1)=F (1) and G (0)=0 ;.

Now, we know that (refer theorem I, Art 1.15)
L{G ()}=sL{G®)}-G0)=sL{G®}, using (1).

4
Ex.1. Prove that L. [ j sin 2u du 2

Sol. Here L {sin 2} =2/(s2+22) =f(s), (:ay+ il

L“;’sin 21«414]:&: 2 by (1)

S s(s*+4)°
Ex.2. Evaluate L [ i
fo x| (Kuraun 1997, Delhi 97, Meerut 9)

Sol. Here L {sint} = 1/ + 1) =£(s), say.

L{smr} jf(s)ds—f %ds [lan 's] , using (1)

=tan ' eo — tan-! s =(m/2) -

(Bangalore 97
.o

(1)

tan"' s =cot-! g, as tan"'x + cot-! x = 2

L J"sinxdx _cot"s
- o x = '

5




1.19. Initial-value theorem and final-value theorem.

Theorem I, Initial value theorem. Let F () be continuous for all
t > 0 and be of exponential order as f — o and if F” (1) is of class A, then

Iirrg F(t)=lim sL{F(1)}.

Proof. We know that L {F (1)} = sL {F ()} =F (0)
or j:e'"F'(:) dt = sL (F (1)} - F(0). k)
Taking limit as s — < in (1), we get
:lim (e~ F(1)}dt = lim [sL{F (1)} - F (O)]. (2

Since F’(1) is sectionally continuous and of exponential order, we have

lim [e™* F'(1)] dt =0. Then (2) reduces to

0 5=
0= lim sL (F(1)} - F(0). L3
or  lim F(r)=lim sL {F (1)}, since F (0) = HMF(®).

0 §=po0
Theorelln_’ll i al-VaIue Theorem. Let F (t) be continuous for all
t 2 0 and be of exponential order and if F 7(t) is of class A, then
lim F (1) =lim sL {F(0)}. (Osmania 2004)

[~y ¥

Proof. We know that L{F ()}=sL{F(n}-F()

& jo e F (1) dt = sL {F (1)} - F(0). (D)

* Taking limit as s —= O in (1), we get

lim | e F (t)dt =lim [sL{F(1)} - F(0)]

=0 J0 0
or [F ()t =lim sL (F()~F(©) or [FOJ = lim sL {F()}-F(©)
or |imF(t)—F(0)=lin(1)sL{F(t)}—F(0) or IimF(r)=lirr5sL{F(r)l.
= [ 5=

[



